一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看

高二數學(xué)學(xué)習方法

時(shí)間:2025-09-22 03:58:32 學(xué)習方法

高二數學(xué)學(xué)習方法

  在學(xué)習、工作乃至生活中,我們大家都離不開(kāi)學(xué)習,有效的學(xué)習方法,能夠幫助大家在更短的時(shí)間內掌握學(xué)習內容。想知道要如何正確的學(xué)習嗎?下面是小編為大家整理的高二數學(xué)學(xué)習方法,歡迎閱讀,希望大家能夠喜歡。

高二數學(xué)學(xué)習方法

  高二數學(xué)學(xué)習方法1

  在中學(xué),數、理、化是課程中最重要的一部分,如果數學(xué)學(xué)不好,那么物理、化學(xué)也不可能學(xué)好。在理工科大學(xué)中,數學(xué)更是一個(gè)基礎。在工農業(yè)生產(chǎn)中,我們都希望能夠多、快、好、省地完成任務(wù)。例如,在現有條件中,如何合理安排生產(chǎn)過(guò)程,使產(chǎn)量最好,使消耗費用最小,而又在最短時(shí)間內完成任務(wù),就存在有大量的數學(xué)理論和計算問(wèn)題。所以,數學(xué)在我們社會(huì )主義建設中能夠并且應該起很大作用。

  有的同學(xué)問(wèn)我學(xué)數學(xué)有什么秘訣?我覺(jué)得學(xué)習上沒(méi)有捷徑好走,也無(wú)秘訣可言,要說(shuō)有,那就是,首先要有決心、信心和恒心。扎扎實(shí)實(shí)地打好基礎,練好基本功。從一點(diǎn)一滴做起,日積月累逐步有所提高。在學(xué)習中不可平均使用力量,而要把勁特別用在一門(mén)新功課,一個(gè)新篇章的開(kāi)頭,用再最基本的內容上。例如,一個(gè)中學(xué)生加、減、乘、除經(jīng)常算錯,那他就不可能學(xué)好代數、三角、幾何、物理、化學(xué)等課程。所以加、減、乘、除,就是一個(gè)基礎。打好扎實(shí)的基礎,要循序漸進(jìn),自然科學(xué),特別是數學(xué),有很強的系統性和連貫性,只有把前面的基礎打牢,才好進(jìn)入后一步,只有一步一個(gè)腳印,學(xué)得扎扎實(shí)實(shí),才可能逐步提高,最后才有希望達到科學(xué)的頂峰。

  第二,要注意獨立思考。拿數學(xué)來(lái)說(shuō),它是一門(mén)著(zhù)重于理解的學(xué)科,在學(xué)習中要防止不求甚解的傾向,一定要勤分析、多思考。對每部分內容,每個(gè)問(wèn)題,要從正面、反面各個(gè)角度多想想,要善于找出它們之間的聯(lián)系,總結出規律性的東西。

  另外,不要一遇到不會(huì )的`東西就馬上去問(wèn)別人,自己不動(dòng)腦子,專(zhuān)門(mén)依賴(lài)別人,要先自己認真地思考一下,這樣就可能依靠自己的努力,克服其中的某些困難,對經(jīng)過(guò)很大努力仍不能解決的問(wèn)題,再虛心地請教別人,這樣才能對自己有更大的幫助和鍛煉。

  第三,學(xué)習態(tài)度要端正,要注意培養良好的習慣,刻苦鉆研,要做到專(zhuān)心致志。例如,有些同學(xué),一邊看電視,一邊看數學(xué)書(shū)或算習題,這樣的效率一定是很低的。所以,不論復習、做題、閱讀參考書(shū)籍都要精力集中,要爭分奪妙,切忌分心。學(xué)習中還要養成嚴肅認真、踏踏實(shí)實(shí)的好學(xué)風(fēng),不要好高鶩遠,更不能夸夸其談。

  第四,知識面要寬些,基礎要打扎實(shí)。前些年,在學(xué)習上出現了一些偏差,有的同學(xué)以為學(xué)好數理化就行了,至于語(yǔ)文學(xué)得好不好無(wú)所謂,這種看法是錯誤的。有的理科大學(xué)生數理化還好,但寫(xiě)實(shí)驗報告文理不通,錯別字很多,這樣,即使你很有創(chuàng )造性,別人還是看不懂。數理化固然重要,但語(yǔ)文(包括外語(yǔ))卻是各門(mén)學(xué)科最基本的工具。語(yǔ)文學(xué)得好,閱讀寫(xiě)作能力提高了,就有助于學(xué)好其他學(xué)科,有助于知識的積累和思路的敞開(kāi)。

  以上是我的一點(diǎn)粗淺的體會(huì ),供同學(xué)們參考。

  高二數學(xué)學(xué)習方法2

  數學(xué),數學(xué)是讓很多理科和文科學(xué)生頭疼的科目。我也不好把握它應該怎么學(xué)習,但是最近我確實(shí)償到了學(xué)習的快樂(lè )。我是這樣學(xué)習的。

  數學(xué)重要的課本的見(jiàn)解和例題,大家要把握好這個(gè)點(diǎn),一定要注意課本,就是說(shuō)你剛剛學(xué)完一節,作習題時(shí)如果沒(méi)有思路,你就要好好的回憶課本講了什么,要做到課本與習題的巧妙結合。

  建議高一高二的同學(xué),分幾步走。

  要課前預習,很多書(shū)都這么說(shuō),可是很多同學(xué)都不屑,但是我要告訴你,如果您能落實(shí)好預習,你的數學(xué)就可以好一半,你預習時(shí)的態(tài)度要端正,不是看一遍書(shū)就完事,而是要認真的思考,看看講解的內容和例題是怎么聯(lián)系的。然后看懂后就做書(shū)上習題,不要小看書(shū)的習題,進(jìn)幾年高考題目有好多都是根據書(shū)的習題改的,這個(gè)要做好的。一定要做出數來(lái),對照答案。

  其次要上課認真聽(tīng)講,看看老師是怎么演繹數學(xué)的,看看老師的說(shuō)法和你預習時(shí)的一樣不,最好記下老師的例題,這例題絕對經(jīng)典,可以當作對象研究的。

  最后就是要課下的習題,認真的完成老師布置的作業(yè),體會(huì )課上所講的內容,不會(huì )的及時(shí)問(wèn)老師。還有就是課外的.練習冊最好別買(mǎi),因為根據我上了高三的經(jīng)驗,買(mǎi)的就是浪費的,千萬(wàn)別買(mǎi)!如果你覺(jué)得沒(méi)有事情做了,那么你就學(xué)習英語(yǔ)和語(yǔ)文吧!這兩科如果學(xué)好了,高三都可以不用復習的。

  但是大家要記住,數學(xué)必須把問(wèn)題全部落實(shí),不能拖。還要和老師及時(shí)的溝通哦。

  數學(xué)復習必須掌握的3個(gè)方法

  數學(xué)是三大主科之一,所占分值比例大,可以說(shuō)是在考試中最容易拿分也可以說(shuō)最容易失分的一個(gè)科目,讀題粗心大意的學(xué)生,往往就丟失不必要的分數,并且這個(gè)科目考生也最忌心浮氣躁,需要靜下心來(lái) 高一,仔細閱題,由易而難做下來(lái)。數學(xué)是一門(mén)講理的學(xué)科,具有很強的邏輯性。相對于初中數學(xué)來(lái)說(shuō),高中數學(xué)明顯難了很多。因此,很多原本在初中數學(xué)成績(jì)很好的同學(xué),到了高中就明顯感到吃力。那么針對20xx年高考數學(xué)學(xué)生該如何應對,考前需要做哪些準備?解題時(shí)需要掌握哪方面技巧,才會(huì )讓自己不易失分?

  數學(xué)考試答題技巧,可以采用數形結合、直接對照法、篩選法等。

  數形結合法:“數”與“形”是數學(xué)這座高樓大廈的兩塊最重要的基石,二者在內容上互相聯(lián)系、在方法上互相滲透、在一定條件下可以互相轉化,而數形結合法正是在這一學(xué)科特點(diǎn)的基礎上發(fā)展而來(lái)的。在解答選擇題的過(guò)程中,可以先根據題意,做出草圖,然后參照圖形的做法、形狀、位置、性質(zhì),綜合圖象的特征,得出結論。用這種方法,既方便解題又容易讓人明白。

  高二數學(xué)學(xué)習方法3

  一、學(xué)習問(wèn)題自我評價(jià)

  每一個(gè)學(xué)習不良者并不一定真的了解自己的問(wèn)題之所在,要想對癥下藥,解決問(wèn)題,對學(xué)習問(wèn)題進(jìn)行自我評價(jià)便尤其顯得重要了。對學(xué)習問(wèn)題可主要從如下幾方面進(jìn)行自我評價(jià):

  l.時(shí)間安排問(wèn)題

  學(xué)習不良者應該反省下列幾個(gè)問(wèn)題:

  (1)是否很少在學(xué)習前確定明確的目標,比如要在多少時(shí)間里完成多少內容。

  (2)學(xué)習是否常常沒(méi)有固定的時(shí)間安排。

  (3)是否常拖延時(shí)間以至于作業(yè)都無(wú)法按時(shí)完成。

  (4)學(xué)習計劃是否是從來(lái)都只能在開(kāi)頭的幾天有效。

  (5)一周學(xué)習時(shí)間是否不滿(mǎn)10小時(shí)。

  (6)是否把所有的時(shí)問(wèn)都花在學(xué)習上了。

  2.注意力問(wèn)題

  (1)注意力完全集中的狀態(tài)是否只能保持10至15分鐘。

  (2)學(xué)習時(shí),身旁是否常有小說(shuō)、雜志等使我分心的東西。

  (3)學(xué)習時(shí)是否常有想入非非的`體驗。

  (4)是否常與人邊聊天邊學(xué)習。

  3.學(xué)習興趣問(wèn)題

  (1)是否一見(jiàn)書(shū)本頭就發(fā)脹。

  (2)是否只喜歡文科,而不喜歡理科。

  (3)是否常需要強迫自己學(xué)習。

  (4)是否從未有意識地強化自己的學(xué)習行為。

  4.學(xué)習方法問(wèn)題

  (1)是否經(jīng)常采用題海戰來(lái)提高解題能力。

  (2)是否經(jīng)常采用機械記憶法。

  (3)是否從未向學(xué)習好的同學(xué)討教過(guò)學(xué)習方法。

  (4)是否從不向老師請教問(wèn)題。

  (5)是否很少主動(dòng)鉆研課外輔助讀物。

  一般而言,回答上述問(wèn)題,肯定的答案 (回答“是”)越多,學(xué)習的效率越低。每個(gè)有學(xué)習問(wèn)題的學(xué)生都應從上述四類(lèi)問(wèn)題中列出自己主要毛病,然后有針對性地進(jìn)行治療。例如一個(gè)學(xué)生毛病是這樣的:在時(shí)間安排上,他總喜歡把任務(wù)拖到第二夫去做;在注意力問(wèn)題上,他總喜歡在寢室里邊與人聊天邊讀書(shū);在學(xué)習興趣上,他對專(zhuān)業(yè)課不感興趣,對旁系的某些課卻很感興趣;在學(xué)習方法上主要采用機械記憶法。這位學(xué)生的病一列出來(lái),我們就能夠采取有效的治療措施了。

  高二數學(xué)學(xué)習方法4

  1.請概括的說(shuō)一下學(xué)習的方法:

  曰:像做其他事一樣,學(xué)習數學(xué)要研究方法。我為你們推薦的方法是:超前學(xué)習,展開(kāi)聯(lián)想,多做總結,找出合情合理。

  2.請談?wù)劤皩W(xué)習的好處:

  曰:首先,超前學(xué)習能挖掘出自身的潛力,培養自學(xué)能力。經(jīng)過(guò)超前學(xué)習,會(huì )發(fā)現自己能獨立解決許多問(wèn)題,對提高自信心,培養學(xué)習興趣很有幫助。

  其次,夠消除對新知識的隱患。超前學(xué)習能夠發(fā)現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽(tīng)別人說(shuō)。似乎自己也能一開(kāi)始就達到這種理解水平,實(shí)踐證明,并非這樣。

  再次,超前學(xué)習中的有些內容,當時(shí)不能透徹理解,但經(jīng)過(guò)深思之后,即使擱置一邊,大腦也會(huì )潛意識加工。當教師進(jìn)度進(jìn)行到這塊內容時(shí),我們做第二次理解,會(huì )深刻的多。

  最后,超前學(xué)習能提高聽(tīng)課質(zhì)量。超前學(xué)習以后,我們發(fā)現新知識中的多數自己完全可以理解。只有少數地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時(shí)間放這少數地方的理解上,即好鋼用在刀刃上。事實(shí)上,一節課,能集中注意力的時(shí)間并不太多。

  3.請談?wù)劼?lián)想與總結。

  曰:聯(lián)想與總結貫穿與學(xué)習過(guò)程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過(guò)程即是聯(lián)想,而認識基礎的是對以前知識的總結。以前總結的越簡(jiǎn)潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識熔進(jìn)原來(lái)的知識結構中為以后的某次聯(lián)想奠定基礎。聯(lián)想與總結在解題中特別有效。也許你以前并沒(méi)有這樣的認識,但解題能力卻很強,這說(shuō)明你很聰明,你在不自覺(jué)中使用這種做法。如果你能很明確的認識這一點(diǎn),你的能力會(huì )更強。

  4.那么我們怎樣預習呢?

  曰:先說(shuō)說(shuō)學(xué)習的目標:

  (1)知道知識產(chǎn)生的背景,弄清知識形成的過(guò)程。

  (2)或早或晚的知道知識的地位和作用:

  (3)總結出認識問(wèn)題的`規律(或說(shuō)出認識問(wèn)題使用了以前的什么規律)。

  再說(shuō)具體的做法:

  (1)對概念的理解。數學(xué)具有高度的抽象性。通常要借助具體的東西加以理解。有時(shí)借助字面的含義:有時(shí)借助其他學(xué)科知識。有時(shí)借助圖形理解概念的最高境界是意會(huì )。一定要在理解概念上下一番苦功夫后再做題。

  (2)對公式定理的預習,公式定理是使用最多的規律的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著(zhù)豐富的數學(xué)方法及相當有用的解題規律。如三角形內角平分線(xiàn)定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無(wú)論是自己完成的,還是看別人的,都要說(shuō)出這樣做是怎樣想出來(lái)的。

  (3)對于例題及習題的處理見(jiàn)上面的(2)及下面的第五條。

  5.請你再談?wù)勱P(guān)于做題。

  曰:做題是學(xué)好數學(xué)的必要條件。題不在多而在精。你們要注重對基本題解決方法的挖掘和解題規律的總結。如解不等:0由分子分母異號可化為或去分母化為兩個(gè)一次不不等式組。它包含了一般的解不等式的思考、解決方法。有時(shí)你們會(huì )遇到很難解的題。如果做不出來(lái),可模仿別人,但模仿的不僅僅是形式,更重要的是人家的思考方法,為什么必然發(fā)生一樣。就是說(shuō),每作一道題都要說(shuō)出想法,是哪條規律指導著(zhù)你?具體的做法可落實(shí)在一題多解,一法多用,一題多變上,這些最能鍛煉你從多角度思考問(wèn)題、與其他知識建立聯(lián)系的能力。

  經(jīng)過(guò)精心的整理,有關(guān)高二數學(xué)學(xué)習:高手為您講解高二數學(xué)學(xué)習方法的內容已經(jīng)呈現給大家,祝大家學(xué)習愉快!

  高二數學(xué)學(xué)習方法5

  一、了解高中數學(xué)知識的特點(diǎn)

  經(jīng)過(guò)初中三年的學(xué)習,特別是中考前的復習、鞏固,同學(xué)們已經(jīng)熟練地掌握初中知識,并對其中一些數學(xué)思想、方法有所體會(huì )。而高中的知識無(wú)論從深度還是廣度上都比初中有所加強,因此在學(xué)習中感到有一定的困難也是正常的。

  解決的方法之一是我們首先要對高中知識的特點(diǎn)有所了解,做到心中有“數”。高中知識及其學(xué)習方法具有以下的特點(diǎn):

  1.概念的抽象性

  進(jìn)入高中后,同學(xué)們覺(jué)得數學(xué)的概念不易理解。的確,初中階段我們所學(xué)的概念很多都是從直觀(guān)例子或實(shí)際事物的關(guān)系中獲得感性認識后才給出定義,而高中的概念的獲得則需要更多的理性思考。

  以函數概念為例,初中階段我們是考慮變量x,y之間的對應關(guān)系,即對x每個(gè)值都有唯一的y對應;而高中再次接觸函數時(shí),是從兩個(gè)非空數集A,B中的元素之間的對應關(guān)系來(lái)考慮的。通過(guò)對比,我們還可以看到兩個(gè)階段中對函數的學(xué)習是有區別的。首先在符號表示上,初中只要求我們以具體的函數解析式如:等來(lái)表示函數,而高中階段我們用更抽象的形式這個(gè)形式便于對函數的一般性質(zhì)進(jìn)行研究;其次,在初中階段,學(xué)習過(guò)函數概念后,通過(guò)對具體函數的應用來(lái)實(shí)現對函數概念的鞏固。而在高中階段則是通過(guò)對函數一般性質(zhì)的討論、應用來(lái)實(shí)現對函數概念的深入理解和鞏固。

  上述分析告訴我們,若能將初、高中的同一概念加以對比、我們就能夠對高中的抽象概念理解得更為透徹。

  2.語(yǔ)言的精煉性

  從集合與函數這章開(kāi)始,一些數學(xué)符號,如 ∩,∪,∈。Φ等等已初廣泛地運用,將繁冗的語(yǔ)言表示得即簡(jiǎn)單又精確。

  例如,空集Φ可以表示方程無(wú)解;再如,設方程組的解集是F,方程的解集分別是與 .若我們要表示出F、、 之間的關(guān)系,用集合語(yǔ)言很容易,即。

  3.知識的.綜合性

  高中數學(xué)每一章,每一節的知識都不是孤立的,章與章之間,節與節之間有密切的聯(lián)系,需要我們綜合運用。

  例如在我們學(xué)習了有關(guān)解不等式的內容后,我們來(lái)看下列問(wèn)題:

  已知三個(gè)不等式:

  要使滿(mǎn)足不等式(3)的x值至少滿(mǎn)足不等式(1)和(2)中的一個(gè),求a的取值范圍。

  這個(gè)問(wèn)題的分析,不僅涉及到不等式解的問(wèn)題,還涉及到方程根的分布,函數在某一點(diǎn)的取值,幾個(gè)不等式解集之間取交還是取并等等,需要我們綜合利用學(xué)過(guò)的知識。

  二、自覺(jué)架起數學(xué)知識的過(guò)渡橋梁

  1.把握好集合的概念、性質(zhì)

  集合知識是由初中向高中知識過(guò)渡的第一座橋梁。

  首先,集合的表法使初中所學(xué)的自然數集、有理數集、實(shí)數集等有關(guān)的知識的表示更為簡(jiǎn)煉,從而簡(jiǎn)化了后面復雜問(wèn)題的表述;其次,集合間的關(guān)系運算可以更好地幫助我們理解新學(xué)的知識,例如對不等式的解或方程組的解的理解;第三,集合作為一種數學(xué)思想滲透于今后所要學(xué)習的許多知識中。因此在高中伊始學(xué)好有關(guān)集合的知識是十分重要的。

  2.加強聯(lián)想與類(lèi)比

  高中知識與初中知識之間的聯(lián)系是十分密切的。高中的很多知識可以通過(guò)降維、降冪等形式轉化為初中的有關(guān)知識,但這需要我們能將它們加以類(lèi)比、聯(lián)想。

  以幾何為例,初中平面幾何中我們有過(guò)證明正三角形內任意一點(diǎn)到三邊的距離和等于三角形的高,通過(guò)面積和相等很容易證明。

  類(lèi)比高中立體幾何,我們能否證明一個(gè)正面體內任意一點(diǎn)到四個(gè)面的距離和等于該四面體的高呢?

  其實(shí)同學(xué)們能夠看出這個(gè)問(wèn)題與上面平面幾何的問(wèn)題是十分類(lèi)似的。這里是將二維的問(wèn)題推廣到三維。二維的問(wèn)題可以用面積解決,三維的問(wèn)題我們能用什么辦法呢?也許用求體積的方法?有興趣的同學(xué)可以試一試。

  當然,聯(lián)想、類(lèi)比是以對知識的理解與掌握為前提的。

  3.深化對數學(xué)計算的認識

  數學(xué)計算在中學(xué)各個(gè)階段的學(xué)習要求有所不同。高中階段要求的不再是簡(jiǎn)單的應用運算法則進(jìn)行運算,而是要求在計算中掌握計算的方法,理解算理,如構造法、拆項法、變量替換法、數學(xué)歸納法等的選擇與運用。

  例如當我們學(xué)習數列求和時(shí)遇到這樣的問(wèn)題:“求1!+2! 2+3! 3+……+n! n的和”。顯然利用公式是無(wú)能為力的。這就需要我們構造算法,不妨從通項n! n入手,找出它與(n+1)!、n! 的關(guān)系,不難發(fā)現 n! n=(n+1)!-n!,這樣運用拆項法解決了求此和的問(wèn)題。

  三、幾點(diǎn)學(xué)習建議

  1.認真閱讀教材

  想只憑借課堂聽(tīng)講就學(xué)好高中數學(xué),這對大多數同學(xué)來(lái)說(shuō)是不太可能的。要求我們在課下認真閱讀教材,在閱讀的同時(shí)還要勒于思考,只有這樣才能深入理解知識及知識的聯(lián)系。

  2.理解、掌握、運用數學(xué)思想方法

  數學(xué)思想方法是數學(xué)知識的精髓。初中階段同學(xué)們對綜合分析法、反證法等有了一些體會(huì )。與之相比,高中所涉及的數學(xué)思想方法要豐富得多。如:集合思想、函數思想、類(lèi)比法、數學(xué)歸納法、分析法等常用的數學(xué)思想方法滲透于各部分知識中,都需要大家認真體會(huì )。

  3.注意知識之間的聯(lián)系

  在日常的學(xué)習中要做到 :

 、僮⒁馑伎疾煌瑪祵W(xué)知識之間的聯(lián)系;

 、谧⒁饫}與習題間的聯(lián)系。弄清知識之間的邏輯關(guān)系,從而系統、靈活地掌握高中數學(xué)。

  高二數學(xué)學(xué)習方法6

  你還在為高中數學(xué)學(xué)習而苦惱嗎?別擔心,看了高二數學(xué)學(xué)習:專(zhuān)家解讀數學(xué)學(xué)習方法以后你會(huì )有很大的收獲:

  一、全面復習,把書(shū)讀薄

  從歷年試卷的內容分布上可以看出,凡是考試大綱中提及的內容,都可能考到,甚至某些不太重要的內容,在某一年可以在大題中出現,如98年數學(xué)一中,不但第三題是一道純粹的解析幾何題,而且還有兩道題是與線(xiàn)性代數結合考了解析幾何的內容,可見(jiàn)猜題的復習方法是靠不住的,而應當參照考試大綱,全面復習,不留遺漏。

  全面復習不是生記硬背所有的知識,相反是要抓住問(wèn)題的實(shí)質(zhì)和各內容,各方法的本質(zhì)聯(lián)系,把要記的東西縮小到最小程度,(要努力使自已理解所學(xué)知識,多抓住問(wèn)題的聯(lián)系,少記一些死知識),而且,不記則已,記住了就要牢靠。事實(shí)證明,有些記憶是終生不忘的,而其它的知識又可以在記住基本知識的基礎上,運用它們之間的聯(lián)系而得到,這就是全面復習的含義。

  二、突出重點(diǎn),精益求精

  在考試大綱要求中,對內容有理解,了解,知道三個(gè)層次的要求;對方法有掌握,會(huì )(或者能)兩個(gè)層次的要求,一般地說(shuō),要求理解的內容,要求掌握的方法,是考試的重點(diǎn)。在歷年考試中,這方面考題出現的概率較大;在同一份試卷中,這方面試題所占有的分數也較多。猜題的人,往往要在這方面下功夫。一般說(shuō)來(lái),也確能猜出幾分來(lái)。但遇到綜合題,這些題在主要內容中含有次要內容。這時(shí),猜題便行不通了。

  我們講的突出重點(diǎn),不僅要在主要內容和方法上多下功夫,更重要的是要去尋找重點(diǎn)內容與次要內容間的聯(lián)系,以主帶次,用重點(diǎn)內容擔挈整個(gè)內容。主要內容理解透了,其它的內容和方法迎刃而解,要抓住主要內容,不是放棄次要內容而孤立主要內容,而是從分析各內容的.聯(lián)系,從比較中自然地突出主要內容。如微分中值定理,有羅爾定理,拉格朗日定理,柯西定理和泰勒公式。由于羅爾定理是拉格朗日定理的特殊情況,而柯西定理和泰勒公式又是拉格朗日定理的推廣。比較這些關(guān)系,便自然得到拉格朗日定理是核心,這這個(gè)定理搞深搞透,并從聯(lián)系中掌握好其它幾個(gè)定理,在考試大綱中,羅爾定理與拉格朗日定理都是要求理解的內容,都是考試重點(diǎn),我們更突出拉氏定理,可謂是精益求精。

  三、基本訓練反復進(jìn)行

  學(xué)習數學(xué),要做一定數量的題,把基本功練熟練透,但我們不主張題海戰術(shù),而是提倡精練,即反復做一些典型的題,做致電一題多解,一題多變。要訓練抽象思維能力,對些基本定理的證明,基本公式的推導,以及一些基本練習題,要作到不用書(shū)寫(xiě),就象棋手下盲棋一樣,只需用腦子默想,即能得到下確答案。這就是我們在前言中提到的,在20分鐘內完成10道客觀(guān)題.其中有些是不用動(dòng)筆,一眼就能乍出答案的題,這樣才叫訓練有素,熟能生巧,基本功扎實(shí)的人,遇到難題辦法也多,不易被難倒。相反,作練習時(shí),眼高手低,總找難題作,結果上了考場(chǎng),遇到與自己曾經(jīng)作過(guò)的類(lèi)似的題目都有可能不會(huì )。不少考生把會(huì )作的題算錯了,歸為粗心大意,確實(shí)人會(huì )有粗心的,但基本功扎實(shí)的人,出了錯立即會(huì )發(fā)現,很少會(huì )粗心地出錯。

  記住了就要牢靠。事實(shí)證明,有些記憶是終生不忘的,而其它的知識又可以在記住基本知識的基礎上,運用它們之間的聯(lián)系而得到,這就是全面復習的含義。

  人,出了錯立即會(huì )發(fā)現,很少會(huì )粗心地出錯。

  高二數學(xué)學(xué)習方法7

  培養濃厚的興趣

  高中的數學(xué)概念抽象、習題繁多、教學(xué)密度大,因此,高一過(guò)后,一些同學(xué)對數學(xué)望而生畏。

  數學(xué)的學(xué)習其實(shí)不會(huì )很難,關(guān)鍵是你是否愿意去嘗試。當你敢于猜想,說(shuō)明你擁有數學(xué)的思維能力;而當你能驗證猜想,則說(shuō)明你已具備了學(xué)習數學(xué)的天賦!認真地學(xué)好高二數學(xué),你能領(lǐng)悟到的還有:怎么用最少的材料做滿(mǎn)足要求的物件;如何配置資源并投入生產(chǎn)才能獲得最多利潤;優(yōu)美的曲線(xiàn)為什么可以和代數方程式建立起關(guān)系;為什么出車(chē)禍比體彩中獎容易得多;為什么一個(gè)年段的各個(gè)班級常常出現生日相同的同學(xué)……

  當你陷入數學(xué)魅力的“圈套”后,你已經(jīng)開(kāi)始走上學(xué)好數學(xué)的第一步!

  培養分析、推斷能力

  其實(shí),數學(xué)不是知識性。經(jīng)驗性的學(xué)科,而是思維性的學(xué)科,高中數學(xué)就充分體現了這一特點(diǎn)。所以,數學(xué)的學(xué)習重在培養觀(guān)察、分析和推斷能力,開(kāi)發(fā)學(xué)習者的創(chuàng )造能力和創(chuàng )新思維。因此,在學(xué)習數學(xué)的過(guò)程中,要有意識地培養這些能力。

  關(guān)于學(xué)習方法和效果的關(guān)系,可以這樣描述:當你愿意去看懂部分題目的答案時(shí),你的考試成績(jì)應該可以輕松及格;當你熱衷于研究各種題型,定期做出小結的時(shí)候,你一定是班級數學(xué)方面的優(yōu)等生;而當你習慣根據數學(xué)定義自己出題,并解決它,你的數學(xué)水平已經(jīng)可以和你的老師并駕齊驅了!

  嘗試這些學(xué)習方法

  學(xué)習程度不同的學(xué)生需要不同的學(xué)習方法。

  如果你正因為數學(xué)的學(xué)習狀態(tài)低迷而苦惱,請按如下要求去做:預習后,帶著(zhù)問(wèn)題走進(jìn)課堂,能讓你的學(xué)習事半功倍;想要做出完美的.作業(yè)是無(wú)知的,出錯并認真訂正才更合理;老師要求的練習并不是“題!,請認真完成,少動(dòng)筆而能學(xué)好數學(xué)的天才即使有 高中生物,也不是你;考試時(shí),正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發(fā)揮正常水平。

  如果你正因為數學(xué)的學(xué)習成績(jì)進(jìn)步緩慢而郁悶,請接受如下建議:收集你自己做過(guò)的錯題,訂正并寫(xiě)清錯誤的原因,這些材料是屬于你個(gè)人的財富;對于考試成績(jì),給自己定一個(gè)能接受的底線(xiàn),定一個(gè)力所能及的奮斗目標;合理的作息時(shí)間和良好的學(xué)習習慣將有助你獲得穩定的學(xué)習成績(jì),所以,請制定好學(xué)習計劃并努力堅持;把很多時(shí)間投入到一個(gè)科目中去,不如把學(xué)習精力合理分配給各個(gè)學(xué)科。人對于某一知識領(lǐng)域的學(xué)習常出現“高原現象”,就是說(shuō)當達到一定程度,再努力時(shí),進(jìn)步開(kāi)始不明顯。

  高二數學(xué)學(xué)習方法8

  一、不等式的基本性質(zhì):

  注意:

  (1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。

  (2)注意課本上的幾個(gè)性質(zhì),另外需要特別注意:

 、偃鬭b0,則 。即不等式兩邊同號時(shí),不等式兩邊取倒數,不等號方向要改變。

 、谌绻麑Σ坏仁絻蛇呁瑫r(shí)乘以一個(gè)代數式,要注意它的正負號,如果正負號未定,要注意分類(lèi)討論。

 、蹐D象法:利用有關(guān)函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。

 、苤薪橹捣ǎ合劝岩容^的'代數式與0比,與1比,然后再比較它們的大小

  二、均值不等式:兩個(gè)數的算術(shù)平均數不小于它們的幾何平均數。

  基本應用:

 、俜趴s,變形;

 、谇蠛瘮底钪担鹤⒁猓

 、僖徽ㄈ嗟;

 、诜e定和最小,和定積最大。

  常用的方法為:拆、湊、平方;

  三、絕對值不等式:

  注意:上述等號=成立的條件;

  四、常用的基本不等式:

 。1)比較法:作差比較:

  作差比較的步驟:

 、抛鞑睿簩σ容^大小的兩個(gè)數(或式)作差。

 、谱冃危簩Σ钸M(jìn)行因式分解或配方成幾個(gè)數(或式)的完全平方和。

 、桥袛嗖畹姆枺航Y合變形的結果及題設條件判斷差的符號。

  注意:若兩個(gè)正數作差比較有困難,可以通過(guò)它們的平方差來(lái)比較大小。

 。2)綜合法:由因導果。

 。3)分析法:執果索因;静襟E:要證只需證,只需證

 。4)反證法:正難則反。

 。5)放縮法:將不等式一側適當的放大或縮小以達證題目的。

  放縮法的方法有:

 、盘砑踊蛏崛ヒ恍╉,

 、茖⒎肿踊蚍帜阜糯螅ɑ蚩s。

 、抢没静坏仁,

 。6)換元法:換元的目的就是減少不等式中變量,以使問(wèn)題化難為易,化繁為簡(jiǎn),常用的換元有三角換元和代數換元。

 。7)構造法:通過(guò)構造函數、方程、數列、向量或不等式來(lái)證明不等式;

  高二數學(xué)學(xué)習方法9

  1.求導法則:

  (c)/=0 這里c是常數。即常數的導數值為0。

  (xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)

  2.導數的幾何物理意義:

  k=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上的點(diǎn)P(x0,f(x0))的切線(xiàn)的斜率。

  V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。

  3.導數的應用:

 、偾笄芯(xiàn)的斜率。

 、趯蹬c函數的.單調性的關(guān)系

  已知 (1)分析 的定義域;

 。2)求導數

 。3)解不等式 ,解集在定義域內的部分為增區間

 。4)解不等式 ,解集在定義域內的部分為減區間。

  我們在應用導數判斷函數的單調性時(shí)一定要搞清以下三個(gè)關(guān)系,才能準確無(wú)誤地判斷函數的單調性。以下以增函數為例作簡(jiǎn)單的分析,前提條件都是函數 在某個(gè)區間內可導。

 、矍髽O值、求最值。

  注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個(gè)。最小值為極小值和f(a) 、f(b)中最小的一個(gè)。

  f/(x0)=0不能得到當x=x0時(shí),函數有極值。

  但是,當x=x0時(shí),函數有極值 f/(x0)=0

  判斷極值,還需結合函數的單調性說(shuō)明。

  4.導數的常規問(wèn)題:

 。1)刻畫(huà)函數(比初等方法精確細微);

 。2)同幾何中切線(xiàn)聯(lián)系(導數方法可用于研究平面曲線(xiàn)的切線(xiàn));

 。3)應用問(wèn)題(初等方法往往技巧性要求較高,而導數方法顯得簡(jiǎn)便)等關(guān)于 次多項式的導數問(wèn)題屬于較難類(lèi)型。

  2.關(guān)于函數特征,最值問(wèn)題較多,所以有必要專(zhuān)項討論,導數法求最值要比初等方法快捷簡(jiǎn)便。

  3.導數與解析幾何或函數圖象的混合問(wèn)題是一種重要類(lèi)型,也是高考中考察綜合能力的一個(gè)方向,應引起注意。

  高二數學(xué)學(xué)習方法10

  培養濃厚的興趣

  高中的數學(xué)概念抽象、習題繁多、教學(xué)密度大,因此,高一過(guò)后,一些同學(xué)對數學(xué)望而生畏。

  數學(xué)的學(xué)習其實(shí)不會(huì )很難,關(guān)鍵是你是否愿意去嘗試。當你敢于猜想,說(shuō)明你擁有數學(xué)的思維能力;而當你能驗證猜想,則說(shuō)明你已具備了學(xué)習數學(xué)的天賦!認真地學(xué)好高二數學(xué),你能領(lǐng)悟到的還有:怎么用最少的材料做滿(mǎn)足要求的物件;如何配置資源并投入生產(chǎn)才能獲得最多利潤;優(yōu)美的曲線(xiàn)為什么可以和代數方程式建立起關(guān)系;為什么出車(chē)禍比體彩中獎容易得多;為什么一個(gè)年段的各個(gè)班級常常出現生日相同的同學(xué)……

  當你陷入數學(xué)魅力的“圈套”后,你已經(jīng)開(kāi)始走上學(xué)好數學(xué)的第一步!

  培養分析、推斷能力

  其實(shí),數學(xué)不是知識性。經(jīng)驗性的學(xué)科,而是思維性的學(xué)科,高中數學(xué)就充分體現了這一特點(diǎn)。所以,數學(xué)的學(xué)習重在培養觀(guān)察、分析和推斷能力,開(kāi)發(fā)學(xué)習者的創(chuàng )造能力和創(chuàng )新思維。因此,在學(xué)習數學(xué)的過(guò)程中,要有意識地培養這些能力。

  關(guān)于學(xué)習方法和效果的關(guān)系,可以這樣描述:當你愿意去看懂部分題目的答案時(shí),你的考試成績(jì)應該可以輕松及格;當你熱衷于研究各種題型,定期做出小結的時(shí)候,你一定是班級數學(xué)方面的優(yōu)等生;而當你習慣根據數學(xué)定義自己出題,并解決它,你的數學(xué)水平已經(jīng)可以和你的老師并駕齊驅了!

  嘗試這些學(xué)習方法

  學(xué)習程度不同的學(xué)生需要不同的學(xué)習方法。

  如果你正因為數學(xué)的學(xué)習狀態(tài)低迷而苦惱,請按如下要求去做:預習后,帶著(zhù)問(wèn)題走進(jìn)課堂,能讓你的學(xué)習事半功倍;想要做出完美的作業(yè)是無(wú)知的,出錯并認真訂正才更合理;老師要求的練習并不是“題!,請認真完成,少動(dòng)筆而能學(xué)好數學(xué)的天才即使有 高中生物,也不是你;考試時(shí),正確率和做題的'速度一樣重要,但是合理地放棄某些題目的想法能幫助你發(fā)揮正常水平。

  如果你正因為數學(xué)的學(xué)習成績(jì)進(jìn)步緩慢而郁悶,請接受如下建議:收集你自己做過(guò)的錯題,訂正并寫(xiě)清錯誤的原因,這些材料是屬于你個(gè)人的財富;對于考試成績(jì),給自己定一個(gè)能接受的底線(xiàn),定一個(gè)力所能及的奮斗目標;合理的作息時(shí)間和良好的學(xué)習習慣將有助你獲得穩定的學(xué)習成績(jì),所以,請制定好學(xué)習計劃并努力堅持;把很多時(shí)間投入到一個(gè)科目中去,不如把學(xué)習精力合理分配給各個(gè)學(xué)科。人對于某一知識領(lǐng)域的學(xué)習常出現“高原現象”,就是說(shuō)當達到一定程度,再努力時(shí),進(jìn)步開(kāi)始不明顯。

  高二數學(xué)學(xué)習方法11

  考察主要還是基礎,難題也不過(guò)是在簡(jiǎn)單題的基礎上加以綜合。所以課本上的內容是很重要的,如果課本上的都不能掌握,就沒(méi)有觸類(lèi)旁通的資本。

  對課本上的內容,上課之前最好能夠首先一下,否則上課時(shí)有一個(gè)知識點(diǎn)沒(méi)有跟上的步驟,下面的就不知所以然了,如此惡性循環(huán),就會(huì )開(kāi)始厭煩數學(xué),對來(lái)說(shuō)是很重要的。課后針對性的.練習題一定要認真做,不能偷懶,高中語(yǔ)文,也可以在課后時(shí)把例題反復演算幾遍,畢竟上課的時(shí)候,是在進(jìn)行題目的演算和講解,在聽(tīng),這是一個(gè)比較機械、比較被動(dòng)的接受知識的過(guò)程。也許你認為自己在上聽(tīng)懂了,但實(shí)際上你對于解題的理解還沒(méi)有達到一個(gè)比較深入的程度,并且非常容易忽視一些真正的解題過(guò)程中必定遇到的難點(diǎn)!昂媚X子不如賴(lài)筆頭”。對于數理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經(jīng)過(guò)周密的筆頭計算才能夠發(fā)現其中的難點(diǎn)并且掌握化解,最終得到正確的計算結果。

  其次是要善于總結歸類(lèi),尋找不同的題型、不同的知識點(diǎn)之間的共性和聯(lián)系,把學(xué)過(guò)的知識系統化。舉個(gè)具體的例子:代數的函數部分,我們學(xué)習了指數函數、對數函數、冪函數、三角函數等好幾種不同類(lèi)型的函數。但是把它們對比著(zhù)總結一下,你就會(huì )發(fā)現無(wú)論哪種函數,我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱(chēng)性。那么你可以將這些函數的上述內容制作在一張大表格中,對比著(zhù)進(jìn)行理解和。在解題時(shí)注意函數表達式與圖形結合使用,必定會(huì )收到好得多的效果。

  最后就是要加強課后練習,除了作業(yè)之外,找一本好的參考書(shū),盡量多做一下書(shū)上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學(xué)習的效果,使你的解題速度越來(lái)越快。

  高二數學(xué)學(xué)習方法12

  高二是高中學(xué)習的關(guān)鍵時(shí)期,不僅課程任務(wù)重,而且很大程度上決定著(zhù)學(xué)生今后的發(fā)展方向,以及能否考入理想的大學(xué)。有著(zhù)豐富教學(xué)經(jīng)驗的老師,向大家傳授高二各學(xué)科學(xué)習技巧,希望對高二學(xué)生掌握良好的學(xué)習方法、提高學(xué)習效率有所幫助。以下是數學(xué)學(xué)科的主要學(xué)習方法。

  關(guān)于學(xué)習方法和效果的關(guān)系,可以這樣描述:當你愿意去看懂部分題目的答案時(shí),你的考試成績(jì)應該可以輕松及格;當你熱衷于研究各種題型,定期做出小結的時(shí)候,你一定是班級數學(xué)方面的優(yōu)等生;而當你習慣根據數學(xué)定義自己出題,并解決它,你的數學(xué)水平已經(jīng)可以和你的.老師并駕齊驅了!

  嘗試這些學(xué)習方法

  學(xué)習程度不同的學(xué)生需要不同的學(xué)習方法。

  如果你正因為數學(xué)的學(xué)習狀態(tài)低迷而苦惱,請按如下要求去做:預習后,帶著(zhù)問(wèn)題走進(jìn)課堂,能讓你的學(xué)習事半功倍;想要做出完美的作業(yè)是無(wú)知的,出錯并認真訂正才更合理;老師要求的練習并不是"題海",請認真完成,少動(dòng)筆而能學(xué)好數學(xué)的天才即使有,也不是你;考試時(shí),正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發(fā)揮正常水平。

  如果你正因為數學(xué)的學(xué)習成績(jì)進(jìn)步緩慢而郁悶,請接受如下建議:收集你自己做過(guò)的錯題,訂正并寫(xiě)清錯誤的原因,這些材料是屬于你個(gè)人的財富;對于考試成績(jì),給自己定一個(gè)能接受的底線(xiàn),定一個(gè)力所能及的奮斗目標;合理的作息時(shí)間和良好的學(xué)習習慣將有助你獲得穩定的學(xué)習成績(jì),所以,請制定好學(xué)習計劃并努力堅持;把很多時(shí)間投入到一個(gè)科目中去,不如把學(xué)習精力合理分配給各個(gè)學(xué)科。人對于某一知識領(lǐng)域的學(xué)習常出現"高原現象",就是說(shuō)當達到一定程度,再努力時(shí),進(jìn)步開(kāi)始不明顯。

  高二數學(xué)學(xué)習方法13

  進(jìn)入高二意味著(zhù)進(jìn)入了學(xué)習新知識的關(guān)鍵階段,因為到了高三基本上就開(kāi)啟了復習模式,所以要利用高二盡可能多的獲取新知識,那么新高二學(xué)生暑假期間就要“溫故知新”,不僅要鞏固高一知識,更要做好高二預習。

  1.鞏固好高一的基礎知識

  經(jīng)過(guò)高一一年的磨合,相信即將進(jìn)入高二的.學(xué)生,對高中數學(xué)有了一定的了解,從知識角度來(lái)看,高一函數是高考的重中之重,因為剛學(xué)過(guò),多數知識點(diǎn)還熟悉,就要利用暑假時(shí)間進(jìn)行提升,不僅要達到“會(huì )”更要做到“通”。

  2.注重歸納總結

  高中數學(xué)就是一個(gè)不斷探尋解題規律的過(guò)程,找到解題思路,發(fā)現規律,數學(xué)題基本上都能迎刃而解,因此,要求新高二的學(xué)生要做到:

  (1)熟練掌握高一、高二數學(xué)基本概念。

  (2)熟練運用基本題型的常見(jiàn)解法、特殊解法。

  (3)總結歸納易錯題(包括錯題原因、正確解法)。

  (4)重點(diǎn)關(guān)注具有代表性的題目。

  3.重視查缺補漏

  很多學(xué)生在高一的學(xué)習中,由于是從初中向高中過(guò)渡,因此,有些知識掌握不牢,造成了知識有缺陷,形不成系統的知識架構,這時(shí)就需要同學(xué)們利用暑假查漏補缺,根據高一期末考試,結合平時(shí)表現,找到自己的薄弱環(huán)節重點(diǎn)加強,只有補齊短板才能在接下來(lái)學(xué)習中更加的順利。

  4.注意提升整合

  到了高二,很多題目要考查的不僅僅是某一個(gè)知識點(diǎn),而是某幾個(gè)知識點(diǎn)的集合,尤其是到了高考,更考查同學(xué)們的綜合理解運用能力,因此,在高二暑假就要提前有意識加強這方面的訓練,不要能騰出時(shí)間去做一些綜合性強,相對比較新的題目。

  高二數學(xué)學(xué)習方法14

  關(guān)鍵是提高聽(tīng)課的效率

  1、課前預習能提高聽(tīng)課的針對性

  預習中發(fā)現的難點(diǎn)是本次講座的重點(diǎn);為了減少聽(tīng)講座的困難,我們可以彌補在預習中沒(méi)有掌握好的舊知識。

  它有助于提高思維能力。預習之后,你可以比較和分析你所理解的與老師的解釋?zhuān)蕴岣吣愕?思維水平。預習還可以培養自己的自學(xué)能力。第二是專(zhuān)心聽(tīng)講。

  2、特別注意講課的開(kāi)頭和結尾

  在講座開(kāi)始時(shí),一般是總結上節課的要點(diǎn),指出這節課要教的內容,這是一個(gè)連接新舊知識的紐帶。最后,它往往是對課堂所學(xué)知識的總結,具有高度的概括性,是在理解的基礎上掌握這一部分知識的方法的提綱。

  此外,老師經(jīng)常在課堂上對一些重點(diǎn)和難點(diǎn)做一些語(yǔ)言、語(yǔ)調,甚至一些動(dòng)作。

  抓好基礎

  數學(xué)練習只不過(guò)是數學(xué)概念和數學(xué)思想的結合應用。明確數學(xué)的基本概念、定理和方法,是判斷問(wèn)題類(lèi)型和知識范圍的前提,是正確掌握解題方法的基礎。

  只有概念清楚,方法全面,遇到問(wèn)題時(shí),能快速得到解決問(wèn)題的方法,或者面對新的練習時(shí),能想到我們平時(shí)做的練習方法,才能快速解決。

  弄清基本定理是正確的,快速解決習題的前提條件,非凡是在復習什么章節的立體中,對基本定理熟悉而靈活掌握就能使習題解清楚,邏輯推理嚴密。反之,能使解題速度慢、邏輯混亂、敘述不清楚。

  制定好計劃

  復習數學(xué),想好的計劃,不僅有大計劃這一項,還一個(gè)小程序,以每月、每周、每日計劃匹配老師的復習計劃,而不是彼此沖突,如根據老師的復習計劃,今天復習的知識分,今天內應該掌握的知識,加深對知識的理解,測試不同方面和不同角度研究知識。

  在每天的復習計劃中,我們應該留出一些時(shí)間去看課本和筆記,復習過(guò)去的知識點(diǎn),思考老師那天說(shuō)了什么,總結當天所學(xué)的知識。

  可以說(shuō),日常鍛煉可以少做一些,但這些歸納、反思、復習是必不可少的。我希望你在制定計劃時(shí)謹慎些。

  高二數學(xué)學(xué)習方法15

  中學(xué)生數學(xué)學(xué)習的心理障礙,是指影響、制約、阻礙中學(xué)生積極主動(dòng)和持久有效地學(xué)習數學(xué)知識、訓練創(chuàng )造性思維、發(fā)展智力、培養數學(xué)自學(xué)能力和自學(xué)習慣的一種心理狀態(tài),也即是中學(xué)生在數學(xué)學(xué)習過(guò)程中因"困惑"、"曲解"或"誤會(huì )"而產(chǎn)生的一種消極心理現象。其主要表現有以下幾個(gè)方面:

  1.依賴(lài)心理

  數學(xué)教學(xué)中,學(xué)生普遍對教師存有依賴(lài)心理,缺乏學(xué)習的主動(dòng)鉆研和創(chuàng )造精神。一是期望教師對數學(xué)問(wèn)題進(jìn)行歸納概括并分門(mén)別類(lèi)地一一講述,突出重點(diǎn)難點(diǎn)和關(guān)鍵;二是期望教師提供詳盡的解題示范,習慣于一步一步地模仿硬套。事實(shí)上,我們大多數數學(xué)教師也樂(lè )于此道,課前不布置學(xué)生預習教材,上課不要求學(xué)生閱讀教材,課后也不布置學(xué)生復習教材;習慣于一塊黑板、一道例題和演算幾道練習題。長(cháng)此以往,學(xué)生的鉆研精神被壓抑,創(chuàng )造潛能遭扼殺,學(xué)習的積極性和主動(dòng)性逐漸喪失。在這種情況下,學(xué)生就不可能產(chǎn)生"學(xué)習的高峰體驗"--高漲的激勵情緒,也不可能在"學(xué)習中意識和感覺(jué)到自己的智慧力量,體驗到創(chuàng )造的樂(lè )趣"。

  2.急躁心理

  急功近利,急于求成,盲目下筆,導致解題出錯。

  一是未弄清題意,未認真讀題、審題,沒(méi)弄清哪些是已知條件,哪些是未知條件,哪些是直接條件,哪些是間接條件,需要回答什么問(wèn)題等;

  二是未進(jìn)行條件選擇,沒(méi)有"從貯存的記憶材料中去提缺題設問(wèn)題所需要的材料進(jìn)行對比、篩選,就"急于猜解題方案和盲目嘗試解題";

  三是被題設假象蒙蔽,未能采用多層次的抽象、概括、判斷和準確的邏輯推理;

  四是忽視對數學(xué)問(wèn)題解題后的整體思考、回顧和反思,包括"該數學(xué)問(wèn)題解題方案是否正確?是否最佳?是否可找出另外的方案?該方案有什么獨到之處?能否推廣和做到智能遷移等等"。

  3.定勢心理

  定勢心理即人們分析問(wèn)題、思考問(wèn)題的思維定勢。在較長(cháng)時(shí)期的數學(xué)教學(xué)過(guò)程中,在教師習慣性教學(xué)程序影響下,學(xué)生形成一個(gè)比較穩固的習慣性思考和解答數學(xué)問(wèn)題程序化、意向化、規律化的個(gè)性思維策略的連續系統--解決數學(xué)問(wèn)題所遵循的某種思維格式和慣性。不可否認,這種解決數學(xué)問(wèn)題的思維格式和思維慣性是數學(xué)知識的積累和解題經(jīng)驗、技能的匯聚,它一方面有利于學(xué)生按照一定的程序思考數學(xué)問(wèn)題,比較順利地求得一般同類(lèi)數學(xué)問(wèn)題的最終答案;另一方面這種定勢思維的單一深化和習慣性增長(cháng)又帶來(lái)許多負面影響,如使學(xué)生的思維向固定模式方面發(fā)展,解題適應能力提高緩慢,分析問(wèn)題和解決問(wèn)題的能力得不到應有的提高等。

  4.偏重結論

  偏重數學(xué)結論而忽視數學(xué)過(guò)程,這是數學(xué)教學(xué)過(guò)程中長(cháng)期存在的問(wèn)題。從學(xué)生方面來(lái)講,同學(xué)間的相互交流也僅是對答案,比分數,很少見(jiàn)同學(xué)間有對數學(xué)問(wèn)題過(guò)程的深層次討論和對解題方法的創(chuàng )造性研究,至于思維變式、問(wèn)題變式更難見(jiàn)有涉及。從教師方面來(lái)講,也存在自覺(jué)不自覺(jué)地忽視數學(xué)問(wèn)題的`解決過(guò)程,忽視結論的形成過(guò)程,忽視解題方法的探索,對學(xué)生的評價(jià)也一般只看"結論"評分,很少顧及"數學(xué)過(guò)程"。從家長(cháng)方面來(lái)講,更是注重結論和分數,從不過(guò)問(wèn)"過(guò)程"。教師、家長(cháng)的這些做法無(wú)疑助長(cháng)了中學(xué)生數學(xué)學(xué)習的偏重結論心理。發(fā)展下去的結果是,學(xué)生對定義、公式、定理、法則的來(lái)龍去脈不清楚,知識理解不透徹,不能從本質(zhì)上認識數學(xué)問(wèn)題,無(wú)法形成正確的概念,難以深刻領(lǐng)會(huì )結論,致使其智慧得不到啟迪,思維的方法和習慣得不到訓練和養成,觀(guān)察、分析、綜合等能力得不到提高。

  此外,還有自卑心理、自諒心理、迷惘心理、厭學(xué)心理、封閉心理等等。這些心理障礙都不同程度地影響、制約、阻礙著(zhù)中學(xué)生學(xué)習數學(xué)的積極性和主動(dòng)性,使數學(xué)教學(xué)效益降低,教學(xué)質(zhì)量得不到應有的提高。

  中學(xué)生產(chǎn)生數學(xué)學(xué)習心理障礙的原因是復雜的,既有教師、家長(cháng)、社會(huì )方面的因素,也有中學(xué)生自身的因素。具體地講,存在的影響因素有如下一些:

 、"應試教育"大氣候影響,片面追求升學(xué)率、題海戰術(shù)使得教師和學(xué)生都忙于應付;

 、趯λ刭|(zhì)教育缺乏科學(xué)的全面的理解;

 、劢逃|(zhì)量評估體系和標準有待于進(jìn)一步完善;

 、軘祵W(xué)學(xué)科價(jià)值還未真正被廣大教師和學(xué)生所認識;

 、萁谭▎握{死板,缺乏針對性、趣味性和靈活性;

 、迣W(xué)法指導不夠,學(xué)生學(xué)習方法不對頭;等等 高中學(xué)習方法。

  高二數學(xué)學(xué)習方法16

  一、課內重視聽(tīng)講,課后及時(shí)復習。

  新知識的接受,數學(xué)能力的培養主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內的學(xué)習效率,尋求正確的學(xué)習方法。上課時(shí)要緊跟老師的思路,根據老師所講的高二數學(xué)公式,積極展開(kāi)思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學(xué)習,課后要及時(shí)復習不留疑點(diǎn)。首先要在做各種習題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,慶盡量回憶而不采用不清楚立即翻書(shū)之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問(wèn)的學(xué)習作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應讓自己冷靜下來(lái)認真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習中要進(jìn)行整理和歸納總結,把知識的點(diǎn)、線(xiàn)、面結合起來(lái)交織成知識網(wǎng)絡(luò ),納入自己的知識體系。

  二、適當多做題,養成良好的解題習慣。

  要想學(xué)好數學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎題入手,以課本上的習題為準,反復練習運用高二數學(xué)公式打好基礎,再找一些課外的習題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫(xiě)出自己的'解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現的解題習慣與平時(shí)練習無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的。

  三、調整心態(tài),正確對待考試。

  首先,應把主要精力放在基礎知識尤其是高二數學(xué)公式的運用,基本技能;痉椒ㄟ@三個(gè)方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

  由此可見(jiàn),要把數學(xué)學(xué)好除了培養學(xué)習數學(xué)的興趣,熟悉掌握高二數學(xué)公式外就得找到適合自己的學(xué)習方法,了解數學(xué)學(xué)科的特點(diǎn),靈活運用高二數學(xué)公式、原理使自己進(jìn)入數學(xué)的廣闊天地中去.

  高二數學(xué)學(xué)習方法17

  每次和同學(xué)們談及,大家似乎都有同感:難,解析幾何又是難中之難。其實(shí)不然,解析幾何題目自有路徑可循,可依。只要經(jīng)過(guò)認真的準備和正確的點(diǎn)撥,完全可以讓的解析幾何壓軸題變成讓同學(xué)們都很有信心的中等題目。

  解析幾何高考的命題趨勢:

  (1)題型穩定:近幾年來(lái)高考解析幾何一直穩定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右,占總分值的20%左右。

  (2)整體平衡,重點(diǎn)突出:《說(shuō)明》中解析幾何部分原有33個(gè)點(diǎn),現縮為19個(gè)點(diǎn),一般考查的點(diǎn)超過(guò)50%,其中對直線(xiàn)、圓、圓錐曲線(xiàn)知識的考查幾乎沒(méi)有遺漏,通過(guò)對知識的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn),對支撐數學(xué)科知識體系的主干知識,考查時(shí)保證較高的比例并保持必要深度。近四年新教材高考對解析幾何內容的考查主要集中在如下幾個(gè)類(lèi)型:

 、偾笄(xiàn)方程(類(lèi)型確定、類(lèi)型未定);

 、谥本(xiàn)與圓錐曲線(xiàn)的交點(diǎn)問(wèn)題(含切線(xiàn)問(wèn)題);

 、叟c曲線(xiàn)有關(guān)的最(極)值問(wèn)題;

 、芘c曲線(xiàn)有關(guān)的幾何證明(對稱(chēng)性或求對稱(chēng)曲線(xiàn)、平行、垂直);

 、萏角笄(xiàn)方程中幾何量及參數間的數量特征;

  (3)立意,滲透數學(xué)思想:如2000年第(22)題,以梯形為背景,將雙曲線(xiàn)的概念、性質(zhì)與坐標法、定比分點(diǎn)的坐標公式、離心率等知識融為一體,有很強的綜合性。一些雖是常見(jiàn)的基本題型,但如果借助于數形結合的思想,就能快速準確的得到答案。

  (4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計算量減少,思考量增大。加大與相關(guān)知識的聯(lián)系(如向量、函數、方程、不等式等),凸現教材中研究性的能力要求。加大探索性題型的分量。

  直線(xiàn)與圓內容的主要考查兩部分:

  (1)以選擇題題型考查本章的基本概念和性質(zhì),此類(lèi)題一般難度不大,但每年必考,考查內容主要有以下幾類(lèi):

 、倥c本章概念(傾斜角、斜率、夾角、距離、平行與垂直、線(xiàn)性規劃等)有關(guān)的問(wèn)題;

 、趯ΨQ(chēng)問(wèn)題(包括關(guān)于點(diǎn)對稱(chēng),關(guān)于直線(xiàn)對稱(chēng))要熟記解法;

 、叟c圓的位置有關(guān)的問(wèn)題,其常規方法是研究圓心到直線(xiàn)的距離.

  以及其他“標準件”類(lèi)型的基礎題。

  (2)以解答題考查直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系,此類(lèi)題綜合性比較強,難度也較大。

  預計在今后一、二年內,高考對本章的考查會(huì )保持相對穩定,即在題型、題量、難度、重點(diǎn)考查內容等方面不會(huì )有太大的變化。

  相比較而言,圓錐曲線(xiàn)內容是平面解析幾何的核心內容,因而是高考重點(diǎn)考查的內容,在每年的高考中一般有2~3道客觀(guān)題和一道解答題,難度上易、中、難三檔題都有,主要考查的內容是圓錐曲線(xiàn)的概念和性質(zhì),直線(xiàn)與圓錐的位置關(guān)系等。

  近十年高考試題看大致有以下三類(lèi):

  (1)考查圓錐曲線(xiàn)的概念與性質(zhì);

  (2)求曲線(xiàn)方程和求軌跡;

  (3)關(guān)于直線(xiàn)與圓及圓錐曲線(xiàn)的位置關(guān)系的.問(wèn)題。

  選擇題主要以橢圓、雙曲線(xiàn)為考查對象,填空題以?huà)佄锞(xiàn)為考查對象,解答題以考查直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系為主,對于求曲線(xiàn)方程和求軌跡的題,高考一般不給出圖形,以考查的能力、分析問(wèn)題的能力,從而體現解析幾何的基本思想和方法,圓一般不單獨考查,總是與直線(xiàn)、圓錐曲線(xiàn)相結合的綜合型考題,等軸雙曲線(xiàn)基本不出題,坐標軸平移或平移化簡(jiǎn)方程一般不出解答題,大多是以選擇題形式出現.解析幾何的解答題一般為難題,近兩年都考查了解析幾何的基本方法——坐標法以及二次曲線(xiàn)性質(zhì)的運用的命題趨向要引起我們的重視。

  請同學(xué)們注意圓錐曲線(xiàn)的定義在解題中的應用,注意解析幾何所研究的問(wèn)題背景平面幾何的一些性質(zhì)。從近兩年的試題看,解析幾何題有前移的趨勢,這就要求考生在基本概念、基本方法、基本技能上多下功夫。參數方程是研究曲線(xiàn)的輔助工具。高考試題中,涉及較多的是參數方程與普通方程互化及等價(jià)變換的數學(xué)思想方法。

  高二數學(xué)學(xué)習方法18

  本章是高考命題的主體內容之一,應切實(shí)進(jìn)行全面、深入地復習,并在此基礎上,突出解決下述幾個(gè)問(wèn)題:

 。1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個(gè)數列的前項和 ,則其通項為 若 滿(mǎn)足 則通項公式可寫(xiě)成 。

 。2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質(zhì)熟練地進(jìn)行計算,是高考命題重點(diǎn)考查的內容。

 。3)解答有關(guān)數列問(wèn)題時(shí),經(jīng)常要運用各種數學(xué)思想。善于使用各種數學(xué)思想解答數列題,是我們復習應達到的目標。

 、俸瘮邓枷耄旱炔畹缺葦盗械耐椆角蠛凸蕉伎梢钥醋魇 的函數,所以等差等比數列的某些問(wèn)題可以化為函數問(wèn)題求解。

 、诜诸(lèi)討論思想:用等比數列求和公式應分為 及 ;已知 求 時(shí),也要進(jìn)行分類(lèi);

 、壅w思想:在解數列問(wèn)題時(shí),應注意擺脫呆板使用公式求解的思維定勢,運用整體思想求解。

 。4)在解答有關(guān)的數列應用題時(shí),要認真地進(jìn)行分析,將實(shí)際問(wèn)題抽象化,轉化為數學(xué)問(wèn)題,再利用有關(guān)數列知識和方法來(lái)解決。解答此類(lèi)應用題是數學(xué)能力的綜合運用,決不是簡(jiǎn)單地模仿和套用所能完成的。特別注意與年份有關(guān)的等比數列的第幾項不要弄錯。

  一、基本概念:

  1、數列的定義及表示方法:

  2、數列的項與項數:

  3、 有窮數列與無(wú)窮數列:

  4、 遞增(減)、擺動(dòng)、循環(huán)數列:

  5、 數列的通項公式an:

  6、 數列的前n項和公式Sn:

  7、 等差數列、公差d、等差數列的結構:

  8、 等比數列、公比q、等比數列的結構:

  二、基本公式:

  9、一般數列的通項an與前n項和Sn的關(guān)系:an=

  10、等差數列的通項公式:an=a1+(n—1)d an=ak+(n—k)d (其中a1為首項、ak為已知的第k項) 當d0時(shí),an是關(guān)于n的一次式;當d=0時(shí),an是一個(gè)常數。

  11、等差數列的前n項和公式:Sn= Sn= Sn=

  當d0時(shí),Sn是關(guān)于n的二次式且常數項為0;當d=0時(shí)(a10),Sn=na1是關(guān)于n的正比例式。

  12、等比數列的通項公式: an= a1 qn—1 an= ak qn—k

 。ㄆ渲衋1為首項、ak為已知的第k項,an0)

  13、等比數列的前n項和公式:當q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

  當q1時(shí),Sn= Sn=

  三、有關(guān)等差、等比數列的結論

  14、等差數列的任意連續m項的和構成的數列Sm、S2m—Sm、S3m—S2m、S4m — S3m、仍為等差數列。

  15、等差數列中,若m+n=p+q,則

  16、等比數列中,若m+n=p+q,則

  17、等比數列的任意連續m項的和構成的數列Sm、S2m—Sm、S3m—S2m、S4m — S3m、仍為等比數列。

  18、兩個(gè)等差數列與的和差的數列、仍為等差數列。

  19、兩個(gè)等比數列與的積、商、倒數組成的數列、 仍為等比數列。

  20、等差數列的任意等距離的項構成的數列仍為等差數列。

  21、等比數列的任意等距離的項構成的數列仍為等比數列。

  22、三個(gè)數成等差的`設法:a—d,a,a+d;四個(gè)數成等差的設法:a—3d,a—d,a+d,a+3d

  23、三個(gè)數成等比的設法:a/q,a,aq;

  四個(gè)數成等比的錯誤設法:a/q3,a/q,aq,aq3

  24、為等差數列,則 (c0)是等比數列。

  25、(bn0)是等比數列,則 (c0且c 1) 是等差數列。

  四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數列的通項結構。

  26、分組法求數列的和:如an=2n+3n

  27、錯位相減法求和:如an=(2n—1)2n

  28、裂項法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求數列的最大、最小項的方法:

 、 an+1—an= 如an= —2n2+29n—3

 、 an=f(n) 研究函數f(n)的增減性

  31、在等差數列 中,有關(guān)Sn 的最值問(wèn)題常用鄰項變號法求解:

 。1)當 0時(shí),滿(mǎn)足 的項數m使得 取最大值。

 。2)當 0時(shí),滿(mǎn)足 的項數m使得 取最小值。

  在解含絕對值的數列最值問(wèn)題時(shí),注意轉化思想的應用。

  高二數學(xué)學(xué)習方法19

  一、問(wèn)題提出

  在絕大多數人的眼里,數學(xué)是一門(mén)比較難學(xué)的學(xué)科。特別是新課程改革后,高中的數學(xué)新增加了很多內容,相當多的一部分學(xué)生向老師抱怨說(shuō)數學(xué)課本的內容和知識點(diǎn)那么多,老是記不住,學(xué)過(guò)就忘了。有的還說(shuō)課本里的內容太簡(jiǎn)單了,能看懂,但是到考試的時(shí)候不會(huì )做題,題目跟學(xué)過(guò)的知識點(diǎn)聯(lián)系不起來(lái)。老師也說(shuō),想不明白明明很簡(jiǎn)單的題目搞不懂為什么學(xué)生不會(huì )做,教學(xué)相當的被動(dòng)。高二是高中的一個(gè)重要的轉折點(diǎn),為了更好地指導老師教學(xué)和學(xué)生學(xué)習數學(xué),我們設計了一份關(guān)于高二數學(xué)的學(xué)習興趣,學(xué)習習慣,學(xué)習態(tài)度,學(xué)習信心和新課程改革的調查問(wèn)卷。

  二.調查研究

  1)調查對象

  針對文科和理科可能會(huì )出現不同的情況,我們對新會(huì )一中高二級(全級19個(gè)班,其中有4個(gè)實(shí)驗班,15個(gè)普通班)的部分學(xué)生進(jìn)行了抽樣調查。為了調查結果更加客觀(guān),我們抽取了高二級四個(gè)普通班中的一個(gè)物理班,一個(gè)生物班,一個(gè)地理班,兩個(gè)政治班共270人進(jìn)行問(wèn)卷調查。

  2)調查結果和分析

 。ㄒ唬⿲Υ龜祵W(xué)的興趣與態(tài)度

  題目 選項 人數 百分比(%)

  1.你覺(jué)得數學(xué)是怎樣的學(xué)科? 有趣的,有挑戰性的 116 42.80%

  非常實(shí)用的 51 18.82%

  枯燥無(wú)味的 43 15.87%

  現實(shí)中難以用到的 61 22.51%

  2.覺(jué)數學(xué)學(xué)習中那一個(gè)環(huán)節最難學(xué)? 概念 24 8.96%

  規律的理解 97 36.19%

  計算和應用 147 54.85%

  3.喜歡數學(xué),是由于什么? 數學(xué)有趣 69 17.74%

  數學(xué)與生活聯(lián)系緊密,將來(lái)有很多地方可以用到 93 23.91%

  數學(xué)有我想從事的事業(yè)和理想 45 11.57%

  數學(xué)可以鍛煉我的邏輯思維 151 38.82%

  數學(xué)老師講課很精彩 31 7.97%

  題目 選項 人數 百分比(%)

  4.不喜歡數學(xué),是由于什么? 數學(xué)太難學(xué)啦 152 38.00%

  以前沒(méi)學(xué)好,基礎不好 123 30.75%

  數學(xué)跟我理想從事的方向太遠了 39 9.75%

  數學(xué)沒(méi)有多大用處 32 8.00%

  咱以前的數學(xué)老師不太怎么樣 54 13.50%

  從圖表可以看出來(lái),42.80%的同學(xué)對數學(xué)用著(zhù)濃厚的興趣,他們都認為數學(xué)是一門(mén)有趣,有挑戰性的學(xué)科。這對數學(xué)老師無(wú)形是一個(gè)鼓舞,大家都知道興趣是最好的老師。這證明數學(xué)相對于其他學(xué)科來(lái)說(shuō),自有吸引學(xué)生的特性,只要好好的引導, 適當的處理教材的內容,很多學(xué)生還是愿意學(xué),并且學(xué)好它的,但不可否認,由于數學(xué)理論性和邏輯性很強,教科書(shū)相對枯燥,在實(shí)際生活中難以用到,這也造成相當多的一部分學(xué)生不喜歡學(xué)數學(xué),不過(guò)隨著(zhù)新課程的改革,數學(xué)教科書(shū)的例子已經(jīng)越來(lái)越多采用現實(shí)生活的例子,這對提高學(xué)生學(xué)數學(xué)的興趣有一定的幫助。

  第二題,對于數學(xué)認為那個(gè)環(huán)節最難學(xué),36.19%學(xué)生選了b——規律的理解,54.85%學(xué)生選了c——計算與應用。教科書(shū)只是簡(jiǎn)單的講明概念,而規律的總結很少,有些更是總結得不夠合理,這就要求老師給學(xué)生們總結出一套適合學(xué)生認知程度的規律,講解透徹,并針對規律出一些相對應的練習加以鞏固。練習要從易到難,循序漸進(jìn),不僅要有簡(jiǎn)單的應用,還要要有規律的'變式應用。因為要學(xué)好數學(xué)沒(méi)有一定的練習是學(xué)不好的。有些學(xué)生的規律記得很熟,但是因為平常練得比較少,考試的時(shí)候稍微變一種形式或說(shuō)法,他們就對題目無(wú)從下手了。這主要是平常對規律理解不透的結果。而對于計算和應用這一部分,一向是學(xué)生感到比較頭疼的環(huán)節。主要是學(xué)生數學(xué)建模的思想比較差,他們不知道怎樣把實(shí)際問(wèn)題跟數學(xué)知識聯(lián)系起來(lái)。所以老師在講課的時(shí)候應該有意識地培養學(xué)生的建模思想,講例題時(shí)不是僅僅講例題應該怎么做就行了,而是講明為什么這樣做,里面運用到什么知識點(diǎn),以后遇到同種類(lèi)型的題應該怎樣下筆,把整個(gè)例題講透,如果有時(shí)間,把題目稍微變通一下,讓學(xué)生做,并要他們比較題目的相同點(diǎn)和不同點(diǎn),自己發(fā)現和總結規律。

  三.小結

  調查問(wèn)卷主要反映出以下幾個(gè)問(wèn)題:

 。1)相當多的一部分學(xué)生喜歡數學(xué),覺(jué)得數學(xué)是有趣的一門(mén)學(xué)科,但是學(xué)起來(lái)覺(jué)得有一定的難度。

 。2)相當多的學(xué)生不注重課本知識,課后少做習題,甚至不做習題。

 。3)沒(méi)有形成良好的學(xué)習數學(xué)的習慣,基本沒(méi)有做到課前預習,課堂上認真聽(tīng)課,課后復習的學(xué)習三步曲。

 。4)由于種種原因,學(xué)生上課聽(tīng)課的質(zhì)量不高。

 。5)學(xué)習數學(xué)的積極性不夠高,效率不高。

 。6)沒(méi)有形成系統的學(xué)習習慣,不善于總結,歸納出一套自己的學(xué)習數學(xué)的方法。

 。7)新課程標準的課本知識跳躍性大,習題難度大,內容多,學(xué)生難以消化吸收。

  四、建議

  針對目前高二學(xué)生的數學(xué)學(xué)習現狀,為了進(jìn)一步提高學(xué)生的學(xué)習成績(jì),教師必須幫助學(xué)生完善學(xué)習過(guò)程。

 。1)教師要指導學(xué)生進(jìn)行預習,使他們養成每節新課前都要進(jìn)行預習的習慣,從而了解下節課教師上課的內容提高聽(tīng)課效率。

 。2)教師要指導學(xué)生采用科學(xué)的學(xué)習方法,提高學(xué)習效率。要培養學(xué)生課后先看書(shū)再完成作業(yè)的學(xué)習習慣,真正理解上節課老師所講的內容,再運用掌握的知識去完成作業(yè)加以鞏固,使每個(gè)學(xué)生都能自覺(jué)地采用科學(xué)的方法進(jìn)行學(xué)習。

 。3)教師要采用適當的方法提高學(xué)生學(xué)習的積極性、主動(dòng)性,使學(xué)生做到對老師批改的作業(yè)要及時(shí)了解,對做錯的題目要認真、及時(shí)訂正。同時(shí)要培養學(xué)生養成嚴謹的學(xué)習態(tài)度,杜絕“治標不治本”的訂正方法。對于學(xué)習中出現的問(wèn)題要認真思考,決不輕易放過(guò)。

 。4)教師要指導學(xué)生養成系統復習的學(xué)習習慣。只有這樣,才能在各種測驗中臨危不懼,瀟灑應對?颗R時(shí)“抱佛腳”去應付測驗是無(wú)法真正提高學(xué)習成績(jì)的。

 。5)教師要引導學(xué)生樹(shù)立正確的學(xué)習動(dòng)機,從思想上扭轉部分學(xué)生的觀(guān)念,幫助他們培養良好的學(xué)習動(dòng)機,使他們能主動(dòng)養成積極的學(xué)習。

 。6)教師應探索新課程教學(xué)模式,積極穩妥推進(jìn)新課程改革。

  高二數學(xué)學(xué)習方法20

  暑期是查漏補缺的黃金時(shí)期,也是想在學(xué)習上逆襲的最佳時(shí)間。特別是對于高二升高三的我,更應該很好的利用這個(gè)暑假,為高三的緊張復習狀態(tài)做好充分的準備。為了讓我高效利用這個(gè)暑假,下面總結了高二升高三的暑期數學(xué)學(xué)習計劃。

  一、把高二知識鞏固好

  從知識角度來(lái)看,高二的解析幾何、數列是高考的重中之重(另一重點(diǎn)內容是函數與導數),高考題經(jīng)常有解析與數列的綜合題。因為剛學(xué)過(guò),多數知識點(diǎn)還熟悉,要在此基礎上提高到(或接近)高考要求,相對來(lái)說(shuō)比較容易。有些學(xué)校在高三第一學(xué)期就開(kāi)始做綜合試卷,如果能掌握好高二知識,會(huì )做得更好,這對以后的學(xué)習有促進(jìn)作用,能幫助我形成良性循環(huán)。

  二、注重歸納總結

  平時(shí)在校由于作業(yè)多,無(wú)暇靜下來(lái)做些歸納總結工作,而這對能力的提高會(huì )有很大的幫助?偨Y可以按章節,也可以按知識點(diǎn)。比如對圓錐曲線(xiàn)一章可按如下進(jìn)行:

  1.基本概念:曲線(xiàn)和方程定義及應用、圓錐曲線(xiàn)的定義及標準方程、直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系等。

  2.基本題型的常見(jiàn)解法、特殊解法,如求兩圓相交弦所在直線(xiàn)的方程,若求交點(diǎn),不僅計算繁而且還會(huì )出現運算錯誤,用曲線(xiàn)系方程則很簡(jiǎn)單。

  3.易錯問(wèn)題剖析。

  4.本章涉及哪些數學(xué)思想方法。對思想方法的歸納要通過(guò)具體例子來(lái)實(shí)現,比如中點(diǎn)弦問(wèn)題,涉及弦長(cháng),則用韋達定理,不涉及弦長(cháng),則用點(diǎn)差法。

  三、彌補薄弱環(huán)節

  在某章節學(xué)得不太好,可以集中時(shí)間補一下。首先要理解基本概念,記住公式和定理,千萬(wàn)不要一邊看公式一邊做題目,這樣效果不好,要通過(guò)做題記住公式。其次要做熟常見(jiàn)的題型,并掌握其變式,要注意解題方法的總結,做題不要追求多,而要追求解題質(zhì)量,提高效率。第三要特別重視定義的運用,還有努力把會(huì )做的題做對,我丟分相當嚴重,平時(shí)都認為是粗心,其實(shí)不盡如此,是多方面原因造成的,應及早找出原因,盡快改正。

  四、騰出時(shí)間挑戰新題

  我做題只是做一些老師講過(guò)或是會(huì )做的題目,這類(lèi)題目多是鞏固性的,反復操練沒(méi)有太大必要。要能騰出時(shí)間去做一些相對比較新的題目,這些題不一定難,但是以前自己沒(méi)見(jiàn)過(guò)的問(wèn)題,可以多花些時(shí)間從各個(gè)不同的角度去思考,這里不僅關(guān)心結果,更關(guān)注過(guò)程,這樣的心理體驗是必須經(jīng)歷的,它有助于高三階段綜合能力的提高。

  五、做些開(kāi)發(fā)思維的'題目

  學(xué)校在放假前就發(fā)了高三的復習用書(shū),要求學(xué)生在暑假做甚至要求做完。對重點(diǎn)中學(xué)中等以上水平的同學(xué)不會(huì )有太大困難,但對中等水平以下和普通中學(xué)的多數同學(xué)會(huì )有不同程度的困難。對此要根據自己的具體情況而定,實(shí)在做不出也不要勉強,那畢竟是高三第一輪的學(xué)習任務(wù)。有些同學(xué)做了,但上課時(shí)又認為自己會(huì )做了,不認真聽(tīng)課,最終效果不好。有些基礎好的同學(xué)由于超前學(xué)習太多,以至于早早就進(jìn)入狀態(tài),到高考時(shí)不一定處在最佳狀態(tài),這部分同學(xué)要注意調節學(xué)習節奏。暑假可做些思維容量大的開(kāi)發(fā)性問(wèn)題,它最終會(huì )使你的能力得到提高,對你以后無(wú)論做什么類(lèi)型的題都會(huì )有幫助。

【高二數學(xué)學(xué)習方法】相關(guān)文章:

高二數學(xué)的學(xué)習方法01-01

高二數學(xué)基本學(xué)習方法09-21

高二數學(xué)學(xué)習方法07-29

高二數學(xué)學(xué)習方法介紹11-05

高二綜合數學(xué)學(xué)習方法09-19

高二英語(yǔ)學(xué)習方法05-24

數學(xué)的學(xué)習方法09-27

數學(xué)的學(xué)習方法06-14

高二化學(xué)學(xué)習方法07-17

教你高二語(yǔ)文的學(xué)習方法07-17

一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看