一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看

二次根式教案

時(shí)間:2025-08-14 04:30:17 教案 我要投稿

有關(guān)二次根式教案三篇

  作為一無(wú)名無(wú)私奉獻的教育工作者,常常要寫(xiě)一份優(yōu)秀的教案,編寫(xiě)教案有利于我們準確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當的教學(xué)方法。那么寫(xiě)教案需要注意哪些問(wèn)題呢?下面是小編整理的二次根式教案3篇,歡迎閱讀,希望大家能夠喜歡。

有關(guān)二次根式教案三篇

二次根式教案 篇1

  活動(dòng)1、提出問(wèn)題

  一個(gè)運動(dòng)場(chǎng)要修兩塊長(cháng)方形草坪,第一塊草坪的長(cháng)是10米,寬是米,第二塊草坪的長(cháng)是20米,寬也是米。你能告訴運動(dòng)場(chǎng)的負責人要準備多少面積的草皮嗎?

  問(wèn)題:10+20是什么運算?

  活動(dòng)2、探究活動(dòng)

  下列3個(gè)小題怎樣計算?

  問(wèn)題:1)-還能繼續往下合并嗎?

  2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對以上幾個(gè)題的觀(guān)察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數相同的進(jìn)行合并。

  活動(dòng)3

  練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數)

  創(chuàng )設問(wèn)題情景,引起學(xué)生思考。

  學(xué)生回答:這個(gè)運動(dòng)場(chǎng)要準備(10+20)平方米的'草皮。

  教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運算。

  我們可以利用已學(xué)知識或已有經(jīng)驗來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結果。

  教師引導驗證:

 、僭O=,類(lèi)比合并同類(lèi)項或面積法;

 、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

 、巯然(jiǎn),再合并

  學(xué)生觀(guān)察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數相同的能合并。

  教師巡視、指導,學(xué)生完成、交流,師生評價(jià)。

  提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

二次根式教案 篇2

  一、內容和內容解析

  1.內容

  二次根式的概念.

  2.內容解析

  本節課是在學(xué)生學(xué)習了平方根、算術(shù)平方根、立方根的概念,會(huì )用根號表示數的平方根、立方根,知道開(kāi)方與乘方互為逆運算的基礎上,來(lái)學(xué)習二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應用,也為后面學(xué)習二次根式的性質(zhì)和四則運算打基礎.

  教材先設置了三個(gè)實(shí)際問(wèn)題,這些問(wèn)題的結果都可以表示成二次根式的形式,它們都表示一些正數的算術(shù)平方根,由此引出二次根式的定義. 再通過(guò)例1討論了二次根式中被開(kāi)方數字母的取值范圍的問(wèn)題,加深學(xué)生對二次根式的定義的理解.

  本節課的教學(xué)重點(diǎn)是:了解二次根式的概念;

  二、目標和目標解析

  1.教學(xué)目標

 。1)體會(huì )研究二次根式是實(shí)際的需要.

 。2)了解二次根式的概念.

  2. 教學(xué)目標解析

 。1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數量和數量關(guān)系,體會(huì )研究二次根式的必要性.

 。2)學(xué)生能根據算術(shù)平方根的意義了解二次根式的概念,知道被開(kāi)方數必須是非負數的理由,知道二次根式本身是一個(gè)非負數,會(huì )求二次根式中被開(kāi)方數字母的取值范圍.

  三、教學(xué)問(wèn)題診斷分析

  對于二次根式的定義,應側重讓學(xué)生理解 “ 的雙重非負性,”即被開(kāi)方數 ≥0是非負數, 的算術(shù)平方根 ≥0也是非負數.教學(xué)時(shí)注意引導學(xué)生回憶在實(shí)數一章所學(xué)習的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開(kāi)方數是非負數這一條件進(jìn)行二次根式有意義的判斷.

  本節課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負性.

  四、教學(xué)過(guò)程設計

  1.創(chuàng )設情境,提出問(wèn)題

  問(wèn)題1你能用帶有根號的的式子填空嗎?

 。1)面積為3 的正方形的邊長(cháng)為_(kāi)______,面積為S 的正方形的邊長(cháng)為_(kāi)______.

 。2)一個(gè)長(cháng)方形圍欄,長(cháng)是寬的2 倍,面積為130?,則它的寬為_(kāi)_____.

 。3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開(kāi)始落下的高度h(單位:)滿(mǎn)足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動(dòng):學(xué)生獨立完成上述問(wèn)題,用算術(shù)平方根表示結果,教師進(jìn)行適當引導和評價(jià).

  【設計意圖】讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì )研究二次根式的必要性.

  問(wèn)題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動(dòng):教師引導學(xué)生說(shuō)出各式的意義,概括它們的共同特征:都表示一個(gè)非負數(包括字母或式子表示的非負數)的算術(shù)平方根.

  【設計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問(wèn)題3 你能用一個(gè)式子表示一個(gè)非負數的算術(shù)平方根嗎?

  師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱(chēng)為二次根號.

  【設計意圖】讓學(xué)生體會(huì )由特殊到一般的過(guò)程,培養學(xué)生的概括能力.

  追問(wèn):在二次根式的概念中,為什么要強調“a≥0”?

  師生活動(dòng):教師引導學(xué)生討論,知道二次根式被開(kāi)方數必須是非負數的理由.

  【設計意圖】進(jìn)一步加深學(xué)生對二次根式被開(kāi)方數必須是非負數的理解.

  3.辨析概念,應用鞏固

  例1 當 時(shí)怎樣的實(shí)數時(shí), 在實(shí)數范圍內有意義?

  師生活動(dòng):引導學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開(kāi)方數為非負數的理解.

  例2 當 是怎樣的實(shí)數時(shí), 在實(shí)數范圍內有意義? 呢?

  師生活動(dòng):先讓學(xué)生獨立思考,再追問(wèn).

  【設計意圖】在辨析中,加深學(xué)生對二次根式被開(kāi)方數為非負數的`理解.

  問(wèn)題4 你能比較 與0的大小嗎?

  師生活動(dòng):通過(guò)分 和 這兩種情況的討論,比較 與0的大小,引導學(xué)生得出 ≥0的結論,強化學(xué)生對二次根式本身為非負數的理解,

  【設計意圖】通過(guò)這一活動(dòng)的設計,提高學(xué)生對所學(xué)知識的遷移能力和應用意識;培養學(xué)生分類(lèi)討論和歸納概括的能力.

  4.綜合運用,鞏固提高

  練習1 完成教科書(shū)第3頁(yè)的練習.

  練習2 當x 是什么實(shí)數時(shí),下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設計意圖】設計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開(kāi)闊學(xué)生的視野,訓練學(xué)生的思維.

  5.總結反思

  教師和學(xué)生一起回顧本節課所學(xué)主要內容,并請學(xué)生回答以下問(wèn)題.

 。1)本節課你學(xué)到了哪一類(lèi)新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

 。3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動(dòng):教師引導,學(xué)生小結.

  【設計意圖】:學(xué)生共同總結,互相取長(cháng)補短,再一次突出本節課的學(xué)習重點(diǎn),掌握解題方法.

  6.布置作業(yè):

  教科書(shū)習題16.1第1,3,5, 7,10題.

  五、目標檢測設計

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設計意圖】考查對二次根式概念的了解,要特別注意被開(kāi)方數為非負數.

  2. 當 時(shí),二次根式 無(wú)意義.

  【設計意圖】考查二次根式無(wú)意義的條件,即被開(kāi)方數小于0,要注意審題.

  3.當 時(shí),二次根式 有最小值,其最小值是 .

  【設計意圖】本題主要考查二次根式被開(kāi)方數是非負數的靈活運用.

  4.對于 ,小紅根據被開(kāi)方數是非負數,得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

  【設計意圖】考查二次根式的被開(kāi)方數為非負數和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.

二次根式教案 篇3

  【1】二次根式的加減教案

  教材分析:

  本節內容出自九年級數學(xué)上冊第二十一章第三節的第一課時(shí),本節在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎上,來(lái)學(xué)習二次根式的加減運算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節重點(diǎn)是二次根式的加減運算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數學(xué)解決實(shí)際問(wèn)題的意識和能力。另外,通過(guò)本小節學(xué)習為后面學(xué)生熟練進(jìn)行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

  學(xué)生分析:

  本節課的內容是知識的延續和創(chuàng )新,學(xué)生積極主動(dòng)的投入討論、交流、建構中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識和創(chuàng )新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標,少部分學(xué)生有困難,基礎差、自學(xué)能力差,因此要提供賞識性評價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當的精神激勵,克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的學(xué)習任務(wù)。

  設計理念:

  新課程有效課堂教學(xué)明確倡導,學(xué)生是學(xué)習的主人,在學(xué)生自學(xué)文本的基礎上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導新的學(xué)習觀(guān),讓他們完成二次根式加減知識研究。教師從過(guò)去知識的傳授者轉變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習活動(dòng)的設計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設置開(kāi)放的`、面向實(shí)際的、富有挑戰性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養分析、歸納、總結的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養成良好的學(xué)習習慣,掌握學(xué)習策略,并根據活動(dòng)中示范和指導培養學(xué)生大膽闡述并討論觀(guān)點(diǎn),說(shuō)明所獲討論的有效性,并對推論進(jìn)行評價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習。

  教學(xué)目標知識與技能目標:

  會(huì )化簡(jiǎn)二次根式,了解同類(lèi)二次根式的概念,會(huì )進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運算解決生活的實(shí)際問(wèn)題。

  過(guò)程與方法目標:

  通過(guò)類(lèi)比整式加減法運算體驗二次根式加減法運算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價(jià)值觀(guān):

  通過(guò)對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數學(xué)學(xué)習的過(guò)程中來(lái),使他們體驗到成功的樂(lè )趣.

  重點(diǎn)、難點(diǎn):重點(diǎn):

  合并被開(kāi)放數相同的同類(lèi)二次根式,會(huì )進(jìn)行簡(jiǎn)單的二次根式的加減法。

  難點(diǎn):

  二次根式加減法的實(shí)際應用。

  關(guān)鍵問(wèn)題 :

  了解同類(lèi)二次根式的概念,合并同類(lèi)二次根式,會(huì )進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導發(fā)現法:在教師的啟發(fā)引導下,鼓勵學(xué)生積極參與,與實(shí)際問(wèn)題相結合,采用“問(wèn)題—探索—發(fā)現”的研究模式,讓學(xué)生自主探索,合作學(xué)習,歸納結論,掌握規律。

  2. 類(lèi)比法:由實(shí)際問(wèn)題導入二次根式加減運算;類(lèi)比合并同類(lèi)項合并同類(lèi)二次根式。

  3.嘗試訓練法:通過(guò)學(xué)生嘗試,教師針對個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導,實(shí)現全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標:

  1.知識目標:二次根式的加減法運算

  2.能力目標:能熟練進(jìn)行二次根式的加減運算,能通過(guò)二次根式的加減法運算解決實(shí)際問(wèn)題。

  3.情感態(tài)度:培養學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點(diǎn)分析:

  重點(diǎn):能熟練進(jìn)行二次根式的加減運算。

  難點(diǎn):正確合并被開(kāi)方數相同的二次根式,二次根式加減法的實(shí)際應用。

  教學(xué)關(guān)鍵:通過(guò)復習舊知識,運用類(lèi)比思想方法,達到溫故知新的目的;運用創(chuàng )設問(wèn)題激發(fā)學(xué)生求知欲;通過(guò)學(xué)生全面參與學(xué)習(分層次要求),達到每個(gè)學(xué)生在學(xué)習數學(xué)上有不同的發(fā)展。

  運用教具:小黑板等。

  教學(xué)過(guò)程:

問(wèn)題與情景

師生活動(dòng)

設計目的

活動(dòng)一:

情景引入,導學(xué)展示

1.把下列二次根式化為最簡(jiǎn)二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

2.現有一塊長(cháng)7.5dm、寬5dm的木板,能否采用如教科書(shū)圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問(wèn)題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽(tīng)學(xué)生的交流,指導學(xué)生探究。

問(wèn):什么樣的二次根式能進(jìn)行加減運算,運算到那一步為止。

由此也可以看到二次根式的加減只有通過(guò)找出被開(kāi)方數相同的二次根式的途徑,才能進(jìn)行加減。

加強新舊知識的聯(lián)系。通過(guò)觀(guān)察,初步認識同類(lèi)二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習15頁(yè)例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個(gè)如教科書(shū)圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動(dòng)二:分層練習,合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見(jiàn)課本16頁(yè))

補充:

活動(dòng)三:分層檢測,反饋小結

教材17頁(yè)習題:

A層、 B層:2、3.

C層1、2.

小結:

這節課你學(xué)到了什么知識?你有什么收獲?

作業(yè):課堂練習冊第5、6頁(yè)。

自學(xué)的同時(shí)抽查部分同學(xué)在黑板上板書(shū)計算過(guò)程。抽2名C層同學(xué)在黑板上完成例1板書(shū)過(guò)程,學(xué)生在計算時(shí)若出現錯誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書(shū)過(guò)程,若出現錯誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書(shū)過(guò)程,并做適當的分析講解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計算。并將結果精確到0.1 m, 學(xué)生考慮問(wèn)題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問(wèn)題的方案是否得當;2)考慮的問(wèn)題是否全面。3)計算是否準確。

A層同學(xué)完成16頁(yè)練習1、2、3;B層同學(xué)完成練習1、2,可選做第3題;C層同學(xué)盡量完成練習1、2。多數同學(xué)完成后,讓學(xué)生在小組內互相檢查,有問(wèn)題時(shí)共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習1;抽4名B層或C層同學(xué)在黑板上板書(shū)練習第2題;抽1名A層或B層同學(xué)在黑板上板書(shū)練習第3題后再分析講解。

點(diǎn)撥:1)對 的`化簡(jiǎn)是否正確;2)當根式中出現小數、分數、字母時(shí),是否能正確處理;

3)運算法則的運用是否正確

先測試,再小組內互批,查找問(wèn)題。學(xué)生反思本節課學(xué)到的知識,談自己的感受。

小結時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對于常見(jiàn)錯誤的認識。

把學(xué)習目標由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習經(jīng)歷由淺到深的過(guò)程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識的欲望。

二次根式的加減運算融入實(shí)際問(wèn)題中去,提高了學(xué)生的學(xué)習興趣和對數學(xué)知識的應用意識和能力。

小組成員互相檢查學(xué)生對于新的知識掌握的情況,鞏固學(xué)生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

培養學(xué)生的計算的準確性,以培養學(xué)生科學(xué)的精神。

對課堂的問(wèn)題及時(shí)反饋,使學(xué)生熟練掌握新知識。

每個(gè)學(xué)生對于知識的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵學(xué)生。

【二次根式教案】相關(guān)文章:

二次根式教案09-12

二次根式教案10-11

【熱門(mén)】二次根式教案三篇09-30

二次根式教案模板7篇11-12

關(guān)于二次根式教案3篇08-28

【精華】二次根式教案三篇12-18

《二次根式》教學(xué)教案(精選10篇)08-16

二次根式教案(通用10篇)10-25

二次根式教案范文合集10篇12-14

一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看