一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看

高中數學(xué)說(shuō)課稿

時(shí)間:2025-07-30 09:41:03 高中說(shuō)課稿 我要投稿

關(guān)于高中數學(xué)說(shuō)課稿范文合集七篇

  作為一位兢兢業(yè)業(yè)的人民教師,就不得不需要編寫(xiě)說(shuō)課稿,是說(shuō)課取得成功的前提。說(shuō)課稿應該怎么寫(xiě)才好呢?以下是小編精心整理的高中數學(xué)說(shuō)課稿7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

關(guān)于高中數學(xué)說(shuō)課稿范文合集七篇

高中數學(xué)說(shuō)課稿 篇1

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一 教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。

教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二 教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習來(lái)突破難點(diǎn)

  三 學(xué)法:

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四 教學(xué)過(guò)程

  第一:創(chuàng )設情景,大概用2分鐘

  第二:實(shí)踐探究,形成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng )設情境,布疑激趣

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的`部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明

 。ㄋ模w納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數學(xué)說(shuō)課稿 篇2

  一、教學(xué)內容分析

  圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象.恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習情況分析

  我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標

  1.深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。

  2.通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對圓錐曲線(xiàn)定義的理解

  2.利用圓錐曲線(xiàn)的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線(xiàn)定義解題

  六、教學(xué)過(guò)程設計

  【設計思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當地給出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的.軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在

  (2)已知動(dòng)點(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運用為主線(xiàn),精心準備了兩道練習題。

  【學(xué)情預設】

  估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的兩個(gè)距離公式。

  在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是 ,實(shí)軸長(cháng)為 ,焦距為 。以深化對概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  七、教學(xué)反思

  1.本課將借助于“XXX”,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。

高中數學(xué)說(shuō)課稿 篇3

  各位評委、各位老師:大家好!

  我叫李長(cháng)杉,來(lái)自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說(shuō)課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個(gè)問(wèn)題,從教材內容分析、教法學(xué)法分析、教學(xué)過(guò)程分析和課堂意外預案等幾個(gè)方面逐一加以分析和說(shuō)明。

  一。教材內容分析:

  1.本節課內容在整個(gè)教材中的地位和作用。

  概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。

  2.教學(xué)目標定位。

  根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。

  3.教學(xué)重點(diǎn)、難點(diǎn)確定。

  本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。

  二。教法學(xué)法分析:

  數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的`意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中"教師為主導,學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。

  三。教學(xué)過(guò)程分析:

  1.創(chuàng )設情景——引入新課。我們常說(shuō)"興趣是最好的老師",長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)練習題組,一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學(xué)生,利用上面解練習題組1的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習中。

  2.探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本19頁(yè)例3、例4作為題組(二),繼續讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。

  3.啟發(fā)引導——形成結論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為"三步曲"法)。

  4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本21頁(yè)練習1-4題。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高練習題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

  四。課堂意外預案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到"意外"的問(wèn)題,我在平時(shí)的教學(xué)中重視對"課堂意外預案"的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)"意外預案".

  1.學(xué)生在做課本練習1(x+2)(x-3)>0 時(shí),可能會(huì )問(wèn)到轉化為不等式組{ 或{ 求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。

  2.根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為不等式組{ 來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上面的轉化不是等價(jià)轉化。

  以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家、各位同仁批評指正。謝謝大家!

高中數學(xué)說(shuō)課稿 篇4

  一、教材分析:

  "數列"是中學(xué)數學(xué)的重要內容之一。不僅在歷年的高考中占有一定的比重,而且在實(shí)際生活中也經(jīng)常要用到數列的一些知識。例如:儲蓄、分期付款中的有關(guān)計算就要用到數列知識。

  就本節課而言,在給出數列的基本概念之后,結合例題,指出數列可以看作定義域為正整數集(或它的有限子集)的函數。因此,本節課的內容,一方面是前面函數知識的延伸及應用,可以使學(xué)生加深對函數概念的理解;另一方面也可以為后面學(xué)習等差數列、等比數列的通項、求和等知識打下鋪墊。所以本節課在教材中起到了"承上啟下"的作用,必須講清、講透。

  二、教學(xué)目標:

  根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標。

  1、知識目標:

 。1)形成并掌握數列及其有關(guān)概念,識記數列的表示和分類(lèi),了解數列通項公式的意義。

 。2)理解數列的通項公式,能根據數列的通項公式寫(xiě)出數列的任意一項。對比較簡(jiǎn)單的數列,使學(xué)生能根據數列的前幾項觀(guān)察歸納出數列的通項公式,并通過(guò)數列與函數的比較加深對數列的認識。

  2、能力目標:

  培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等分析問(wèn)題的能力,同時(shí)加深理解數學(xué)知識之間相互滲透性的思想。

  3、情感目標:

  通過(guò)滲透函數、方程思想,培養學(xué)生的思維能力,使學(xué)生在民主、和諧的活動(dòng)中感受學(xué)習的樂(lè )趣。通過(guò)介紹數列與函數間存在的特殊到一般關(guān)系,向學(xué)生進(jìn)行辯證唯物主義思想教育。

  三、重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn)

  理解數列的概念及其通項公式,加強與函數的聯(lián)系,并能根據通項公式寫(xiě)出數列中的任意一項。

  2、教學(xué)難點(diǎn)

  根據數列前幾項的特點(diǎn),通過(guò)多角度、多層次的觀(guān)察和分析,歸納出數列的通項公式。

  四、教法學(xué)法

  本節課以"問(wèn)題情境——歸納抽象——鞏固訓練"的模式展開(kāi),引導學(xué)生從知識和生活經(jīng)驗出發(fā),提出問(wèn)題并與學(xué)生共同探索、討論解決問(wèn)題的.方法,讓學(xué)生經(jīng)歷知識的形成過(guò)程,從而理解更加透徹。

  現代教學(xué)觀(guān)明確指出:教師是主導,學(xué)生是主體,學(xué)生應成為學(xué)習的主人。根據本節內容及學(xué)生的認知規律,針對不同內容應選擇不同的方法。對于國際象棋棋盤(pán)麥粒采用電腦動(dòng)畫(huà)演示,增強感性認識;所舉的引例及數列的函數定義,可采用探索發(fā)現法;對通項公式及數列的分類(lèi)等概念采用指導閱讀法;對于難題(根據數列的前幾項寫(xiě)出一個(gè)通項公式)采用講練結合法。

  "授人以魚(yú),不如授人以漁",平時(shí)在教學(xué)中教師應不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課從學(xué)生實(shí)際出發(fā),創(chuàng )設情境,引導學(xué)生觀(guān)察、分析,探索發(fā)現,歸納總結,培養學(xué)生積極思維的品質(zhì),加強主動(dòng)學(xué)習的能力。

  為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,本節課將常規教學(xué)手段與現代教學(xué)手段相結合,將引例、例題、練習等實(shí)物投影。

  五、教學(xué)過(guò)程

  1、創(chuàng )設情景,激發(fā)興趣,引入新課

 。1)電腦動(dòng)畫(huà)演示:國際象棋棋盤(pán)格子中放有麥粒的示意圖,從而得到一組數:1,2,22,23……263

  敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。

  設計意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫(huà),敘述小故事,增強了感性認識,調動(dòng)學(xué)生學(xué)習新知識的積極性。

 。2)投影演示,再觀(guān)察以下幾列數:

 、倌嘲鄬W(xué)生的學(xué)號:1,2,3,4……,50

 、趶1984年到20xx年,中國體育健兒參加奧運會(huì )每屆所得的金牌數:

  15,5,16,16,28,32

 、勰炒位顒(dòng),在1km長(cháng)的路段,從起點(diǎn)開(kāi)始,每隔10m放置一個(gè)垃圾筒,由近及遠各筒與起點(diǎn)的距離排成一列數:0.10.20.30,……1000

 、芊派湫晕镔|(zhì)衰變,設原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

  2、歸納抽象,形成概念

 。1)學(xué)生嘗試敘述數列的定義:?jiǎn)l(fā)學(xué)生觀(guān)察上述幾組數據后,進(jìn)行歸納總結定義:按一定次序排成的一列數,叫數列,便于培養學(xué)生的抽象概括能力。

  舉例1:1,3,5,7與7,5,3,1 這兩個(gè)數列有何區別?

  舉例2:-1,1,-1,1,……是不是一個(gè)數列?

  設計意圖:使學(xué)生注意把數列中的數和集合中的元素區分開(kāi)來(lái):

 、贁盗兄械臄凳怯许樞虻,而集合中的元素是無(wú)序的。

 、跀盗兄械臄悼梢灾貜统霈F,而集中的元素不能重復出現。

  進(jìn)一步加深學(xué)生對數列定義的理解。

 。2)數列的項及項的表示方法: an

 。3)數列的表示方法:可寫(xiě)成:a1,a2,a3,……,an……

  或簡(jiǎn)記為:{an},注意an與{an}的區別

  上述(2)(3)采用指導閱讀法(書(shū)P106頁(yè)第7節~第8節第一句話(huà)),對an與{an}的區別進(jìn)行集體討論歸納。

  3、通項公式的探索

 。1)觀(guān)察歸納定義

  由學(xué)生觀(guān)察引例中數列的項與它在數列中的位置(即項的序號)間的關(guān)系:

  實(shí)物投影:

  序號 1 2 3 …… 64

  ↓ ↓ ↓ ↓

  項 1= 21-1 2=22-1 22 = 23-1 …… 263

  從而可看出項與項的序號之間可用一個(gè)公式:an =2n-1表示,該公式叫數列的通項公式,然后歸納抽象出數列的通項公式的定義(略)。

 。2)用函數觀(guān)點(diǎn)看待數列:這是一個(gè)難點(diǎn),講解必須清楚、透徹。數列可看作是以自然數集或它的有限子集為定義域的函數,當自變量由小到大依次取值時(shí)對應的一列函數值(這是數列的本質(zhì)),其圖象是一群孤立的點(diǎn),畫(huà)圖(棋盤(pán)麥粒這個(gè)數列)

  設計意圖:加深對函數概念的理解。

 。3)數列的分類(lèi),并口答引例及數列①②③④分別歸于哪類(lèi)數列。

  4、講解例題

  設計例題:①根據通項公式寫(xiě)出前幾項并會(huì )判斷某個(gè)數是否為該數列中的項;②根據數列的前幾項寫(xiě)出一個(gè)通項公式。

  例1,根據下列數列{an}的通項公式,寫(xiě)出它的前5項

 。1) an= n/(n+1) (2)an=(-1)n · n

  設計意圖:使學(xué)生正確掌握通項與序號的關(guān)系。

  變式訓練:?jiǎn)?wèn) 2589/2590是否為數列(1)中的項

  設計意圖:使學(xué)生明確方程思想是解決數列問(wèn)題的重要方法。

  例2,寫(xiě)出下列數列的一個(gè)通項公式,使它的前4項分別是下列各數:

 。1)1,3,5,7

 。2)2, -2,2 ,-2

 。3)1 ,11 ,111 ,

  設計意圖:引導學(xué)生進(jìn)行解題后反思,對完善學(xué)生的認知結構是十分必要。寫(xiě)通項公式時(shí),就是要去發(fā)現an與n的關(guān)系,對各項進(jìn)行多角度、多層次觀(guān)察,找出這些項與相應的項數(即序號)之間的對應關(guān)系。(注:遇到分數,可分別觀(guān)察分子組的數列特征與分母組成的數列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進(jìn)行符號交換,有時(shí)也可根據相鄰的項,適當調整有關(guān)的表達式。)

  5、練習鞏固

  投影演示:

 。1)寫(xiě)出數列1,-1,1,-1,……的一個(gè)通項公式

 。2)是否所有數列都有通項公式?

  上述(1)的設計意圖:an=(-1)n+1也可寫(xiě)成 (分段函數的形式)(當n為奇數時(shí),n為偶數時(shí)),說(shuō)明根據數列的前幾項寫(xiě)出的通項公式可能不唯一。(2):引例②就沒(méi)有通項公式。通過(guò)這些練習,使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內容。

  6、歸納小結

  由學(xué)生試著(zhù)總結本節課所學(xué)內容,老師適當補充,可以訓練學(xué)生的收斂思維,有助于完善學(xué)生的思維結構。

 。1) 數列及有關(guān)概念。

 。2) 根據數列的通項公式求任意一項,并能判斷某數是否為該數列中的項。

 。3) 根據數列的前幾項寫(xiě)出數列的一個(gè)通項公式。

 。4) 數列與函數的關(guān)系

  7、課后作業(yè):

 。1)課本P110/習題3.1/1(3)(4)(5);2、書(shū)P108/4(1)(3)(4)

 。2)復習看書(shū)P106-107

  六、評價(jià)與分析

  本節課,教師可通過(guò)創(chuàng )設情景,適時(shí)引導的方式來(lái)激發(fā)學(xué)生積極思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現,課堂上除反復強調注意點(diǎn)外,還應通過(guò)課堂練習和課后作業(yè)來(lái)強化它們。

  通過(guò)本節課的學(xué)習,學(xué)生不僅掌握了數列及有關(guān)概念,而且可體會(huì )到數學(xué)概念形成過(guò)程中蘊含的基本數學(xué)思想:"函數思想、數形結合思想、特殊化思想",使之獲得內心感受,提高了基本技能和解決問(wèn)題的能力,也可以逐漸學(xué)會(huì )辯證地看待問(wèn)題。

高中數學(xué)說(shuō)課稿 篇5

  一、教材分析

  1、教學(xué)內容

  本節課內容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。

  2、教材的地位和作用

  函數單調性是高中數學(xué)中相當重要的一個(gè)基礎知識點(diǎn),是研究和討論初等函數有關(guān)性質(zhì)的基礎。掌握本節內容不僅為今后的函數學(xué)習打下理論基礎,還有利于培養學(xué)生的抽象思維能力,及分析問(wèn)題和解決問(wèn)題的能力。

  3、教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵

  教學(xué)重點(diǎn):函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個(gè)局部概念。

  教學(xué)難點(diǎn):領(lǐng)會(huì )函數單調性的實(shí)質(zhì)與應用,明確單調性是一個(gè)局部的概念。

  教學(xué)關(guān)鍵:從學(xué)生的學(xué)習心理和認知結構出發(fā),講清楚概念的形成過(guò)程、

  4、學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強。

  二、目標分析

 。ㄒ唬┲R目標:

  1、知識目標:理解函數單調性的概念,掌握判斷一些簡(jiǎn)單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說(shuō)出函數的單調區間。

  2、能力目標:通過(guò)證明函數的單調性的學(xué)習,使學(xué)生體驗和理解從特殊到一般的數學(xué)歸納推理思維方式,培養學(xué)生的觀(guān)察能力,分析歸納能力,領(lǐng)會(huì )數學(xué)的歸納轉化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動(dòng)構建的能力。

  3、情感目標:讓學(xué)生積極參與觀(guān)察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識的過(guò)程中體會(huì )成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會(huì )用運動(dòng)變化的觀(guān)點(diǎn)去觀(guān)察分析事物的方法。通過(guò)滲透數形結合的數學(xué)思想,對學(xué)生進(jìn)行辨證唯物主義的思想教育。

 。ǘ┻^(guò)程與方法

  培養學(xué)生嚴密的邏輯思維能力以及用運動(dòng)變化、數形結合、分類(lèi)討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì),通過(guò)函數的單調性的學(xué)習,掌握自變量和因變量的關(guān)系。通過(guò)多媒體手段激發(fā)學(xué)生學(xué)習興趣,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題和解題的邏輯推理能力。

  三、教法與學(xué)法

  1、教學(xué)方法

  在教學(xué)中,要注重展開(kāi)探索過(guò)程,充分利用好函數圖象的直觀(guān)性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節課采用問(wèn)答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著(zhù)主導作用,讓學(xué)生在教師的提問(wèn)中自覺(jué)的發(fā)現新知,探究新知,并且加入激勵性的語(yǔ)言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過(guò)程。

  2、學(xué)習方法

  自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學(xué)生學(xué)習的主要方式。

  四、過(guò)程分析

  本節課的教學(xué)過(guò)程包括:?jiǎn)?wèn)題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個(gè)板塊。這里分別就其過(guò)程和設計意圖作一一分析。

 。ㄒ唬﹩(wèn)題情景:

  為了激發(fā)學(xué)生的學(xué)習興趣,本節課借助多媒體設計了多個(gè)生活背景問(wèn)題,并就圖表和圖象所提供的信息,提出一系列問(wèn)題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習興趣和求知欲望,為學(xué)習函數的單調性做好鋪墊。(祥見(jiàn)課件)

  新課程理念認為:情境應貫穿課堂教學(xué)的始終。本節課所創(chuàng )設的生活情境,讓學(xué)生親近數學(xué),感受到數學(xué)就在他們的周?chē),強化學(xué)生的感性認識,從而達到學(xué)生對數學(xué)的理解。讓學(xué)生在課堂的一開(kāi)始就感受到數學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì )用數學(xué)的眼光去關(guān)注生活。

 。ǘ┖瘮祮握{性的定義引入

  1、幾何畫(huà)板動(dòng)畫(huà)演示,請學(xué)生認真觀(guān)察,并回答問(wèn)題:通過(guò)學(xué)生已學(xué)過(guò)的函數y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數單調性有感性認識。,進(jìn)行比較,分析其變化趨勢。并探討、回答以下問(wèn)題:

  問(wèn)題1、觀(guān)察下列函數圖象,從左向右看圖象的變化趨勢?

  問(wèn)題2:你能明確說(shuō)出“圖象呈上升趨勢”的意思嗎?

  通過(guò)學(xué)生的交流、探討、總結,得到單調性的“通俗定義”:

  從在某一區間內當x的值增大時(shí),函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來(lái)描述上升的圖象?

  通過(guò)問(wèn)題逐步向抽象的定義靠攏,將圖形語(yǔ)言轉化為數學(xué)符號語(yǔ)言。幾何畫(huà)板的靈活使用,數形有機結合,引導學(xué)生從圖形語(yǔ)言到數學(xué)符號語(yǔ)言的翻譯變得輕松。

  設計意圖:

 、偻ㄟ^(guò)學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習興趣和學(xué)習熱情,同時(shí)也可以培養學(xué)生觀(guān)察、猜想、歸納的思維能力和創(chuàng )新意識,增強學(xué)生自主學(xué)習、獨立思考,由學(xué)會(huì )向會(huì )學(xué)的轉化,形成良好的思維品質(zhì)。

 、谕ㄟ^(guò)學(xué)生已學(xué)過(guò)的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的'變化關(guān)系,使學(xué)生對函數單調性有感性認識。

 、蹚膶W(xué)生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區的理論”要求。

 、軓膱D形、直觀(guān)認識入手,研究單調性的概念,其本身就是研究、學(xué)習數學(xué)的一種方法,符合新課程的理念。

 。ㄈ┰龊瘮、減函數的定義

  在前面的基礎上,讓學(xué)生討論歸納:如何使用數學(xué)語(yǔ)言來(lái)準確描述函數的單調性?在學(xué)生回答的基礎上,給出增函數的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。

  定義中的“當x1x2時(shí),都有f(x1)

  注意:

 。1)函數的單調性也叫函數的增減性;

 。2)注意區間上所取兩點(diǎn)x1,x2的任意性;

 。3)函數的單調性是對某個(gè)區間而言的,它是一個(gè)局部概念。

  讓學(xué)生自已嘗試寫(xiě)出減函數概念,由兩名學(xué)生板演。提出單調區間的概念。

  設計意圖:通過(guò)給出函數單調性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數的單調性其實(shí)也叫做函數的增減性,它是對某個(gè)區間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數在某個(gè)區間上的單調性的一般步驟。這樣處

  理,同時(shí)也是讓學(xué)生感悟、體驗學(xué)習數學(xué)感念的方法,提高其個(gè)性品質(zhì)。

 。ㄋ模├}分析

  在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。

  2、例2、證明函數在區間(—∞,+∞)上是減函數。

  在本題的解決過(guò)程中,要求學(xué)生對照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過(guò)自己的解決,總結證明單調性問(wèn)題的一般方法。

  變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么?

  變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來(lái)判斷。

  變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來(lái)判斷。

  錯誤:實(shí)質(zhì)上并沒(méi)有證明,而是使用了所要證明的結論

  例題設計意圖:在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應用數形結合的思想方法解題的意識,進(jìn)一步加深對概念的理解,同時(shí)也是依托具體問(wèn)題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進(jìn)行觀(guān)察是一種常用而又粗略的方法。嚴格地說(shuō),它需要根據單調函數的定義進(jìn)行證明。例2是教材練習題改編,通過(guò)師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過(guò)例2的解決是學(xué)生初步掌握運用概念進(jìn)行簡(jiǎn)單論證的基本方法,強化證題的規范性訓練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數學(xué)問(wèn)題。目的是進(jìn)一步強化解題的規范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì )一些常見(jiàn)的變形方法。

 。ㄎ澹╈柟膛c探究

  1、教材p36練習2,3

  2、探究:二次函數的單調性有什么規律?

 。◣缀萎(huà)板演示,學(xué)生探究)本問(wèn)題作為機動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。

  設計意圖:通過(guò)觀(guān)察圖象,對函數是否具有某種性質(zhì)作出一種猜想,然后通過(guò)推理的辦法,證明這種猜想的正確性,是發(fā)現和解決問(wèn)題的一種常用數學(xué)方法。

  通過(guò)課堂練習加深學(xué)生對概念的理解,進(jìn)一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時(shí)強化解題步驟,形成并提高解題能力。對練習的思考,讓學(xué)生學(xué)會(huì )反思、學(xué)會(huì )總結。

 。┗仡櫩偨Y

  通過(guò)師生互動(dòng),回顧本節課的概念、方法。本節課我們學(xué)習了函數單調性的知識,同學(xué)們要切記:?jiǎn)握{性是對某個(gè)區間而言的,同時(shí)在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進(jìn)行判斷和證明。

  設計意圖:通過(guò)小結突出本節課的重點(diǎn),并讓學(xué)生對所學(xué)知識的結構有一個(gè)清晰的認識,學(xué)會(huì )一些解決問(wèn)題的思想與方法,體會(huì )數學(xué)的和諧美。

 。ㄆ撸┱n外作業(yè)

  1、教材p43習題1。3A組1(單調區間),2(證明單調性);

  2、判斷并證明函數在上的單調性。

  3、數學(xué)日記:談?wù)勀惚竟澱n中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。

  設計意圖:通過(guò)作業(yè)1、2進(jìn)一步鞏固本節課所學(xué)的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學(xué)生對本結內容各項目標落實(shí)的評價(jià)。新課標要求:不同的學(xué)生學(xué)習不同的數學(xué),在數學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現。

 。ㄆ撸┌鍟(shū)設計(見(jiàn)ppt)

  五、評價(jià)分析

  有效的概念教學(xué)是建立在學(xué)生已有知識結構基礎上,,因此在教學(xué)設計過(guò)程中注意了:

  第一、教要按照學(xué)的法子來(lái)教;

  第二、在學(xué)生已有知識結構和新概念間尋找“最近發(fā)展區”;

  第三、強化了重探究、重交流、重過(guò)程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng )設情境——探究概念——注重反思——拓展應用——歸納總結”的活動(dòng)過(guò)程,體驗了參與數學(xué)知識的發(fā)生、發(fā)展過(guò)程,培養“用數學(xué)”的意識和能力,成為積極主動(dòng)的建構者。

  本節課圍繞教學(xué)重點(diǎn),針對教學(xué)目標,以多媒體技術(shù)為依托,展現知識的發(fā)生和形成過(guò)程,使學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,激情引趣,并注重數學(xué)科學(xué)研究方法的學(xué)習,是順應新課改要求的,是研究性教學(xué)的一次有益嘗試。

高中數學(xué)說(shuō)課稿 篇6

  各位領(lǐng)導、專(zhuān)家、同仁:您們好!

  我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!

  根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。

  二、教學(xué)目標

  根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:

  知識目標:

  1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;

  2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;

  3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;

  4、強化“形”與“數”一致并相互轉化的思想方法。

  能力目標:

  1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;

  2、在形成曲線(xiàn)和方程的.概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);

  3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。

  情感目標:

  1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;

  2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。

  三、重難點(diǎn)突破

  “曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。

  五、教法分析

  新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上的知識的傳授者和學(xué)生的管理者,轉變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡(jiǎn)單的教書(shū)匠轉變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習的主人而不是知識的奴隸,基于此,本節課遵循了概念學(xué)習的四個(gè)基本步驟,重點(diǎn)采用了問(wèn)題探究和啟發(fā)式相結合的教學(xué)方法。

  從實(shí)例、到類(lèi)比、到推廣的問(wèn)題探究,它對激發(fā)學(xué)生學(xué)習興趣,培養學(xué)習能力都十分有利。啟發(fā)引導學(xué)生得出概念,深化概念,并應用它去討論、研究和解決問(wèn)題。在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力打下了基礎。

  利用多媒體輔助教學(xué),節省了時(shí)間,增大了信息量,增強了直觀(guān)形象性。

  六、學(xué)法分析

  基礎教育課程改革要求加強學(xué)習方式的改變,提倡學(xué)習方式的多樣化,各學(xué)科課程通過(guò)引導學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問(wèn)題的能力,以及交流合作的能力,基于此,本節課從實(shí)例引入→類(lèi)比→推廣→得概念→概念挖掘深化→具體應用→作業(yè)中的研究性問(wèn)題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,與合作探究相結合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識的發(fā)現者和知識的研究者。

  七、教學(xué)過(guò)程分析

  1、感性認識階段——以舊帶新、提出課題

高中數學(xué)說(shuō)課稿 篇7

  一.說(shuō)教材

  1.本節課主要內容是線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,根據約束條件建立線(xiàn)性目標函數。應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  2.地位作用:線(xiàn)性規劃是數學(xué)規劃中理論較完整、方法較成熟、應用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設計、經(jīng)濟管理等許多方面的實(shí)際問(wèn)題。簡(jiǎn)單的線(xiàn)性規劃是在學(xué)習了直線(xiàn)方程的基礎上,介紹直線(xiàn)方程的一個(gè)簡(jiǎn)單應用。通過(guò)這部分內容的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,以培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  3.教學(xué)目標

  (1)知識與技能:了解線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,能根據約束條件建立線(xiàn)性目標函數。

  了解并初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  (2)過(guò)程與方法:提高學(xué)生數學(xué)地提出、分析和解決問(wèn)題的能力,發(fā)展學(xué)生數學(xué)應用意識,力求對現實(shí)世界中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。

  (3)情感、態(tài)度與價(jià)值觀(guān):體會(huì )數形結合、等價(jià)轉化等數學(xué)思想,逐步認識數學(xué)的應用價(jià)值,提高學(xué)習數學(xué)的興趣,樹(shù)立學(xué)好數學(xué)的自信心。

  4.重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和用好圖解法

  難點(diǎn):如何用圖解法尋找線(xiàn)性規劃的最優(yōu)解。

  二.說(shuō)教學(xué)方法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的`教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。這能充分調動(dòng)學(xué)生的主動(dòng)性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動(dòng)”的方法。這有利于學(xué)生對知識進(jìn)行主動(dòng)建構;有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng )造性。

  (3)體現“等價(jià)轉化”、“數形結合”的思想方法。這樣可發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,有利于提高學(xué)生的各種能力。

  三.說(shuō)學(xué)法指導

  教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:觀(guān)察分析、聯(lián)想轉化、動(dòng)手實(shí)驗、練習鞏固。

  (1)觀(guān)察分析:通過(guò)引例讓學(xué)生觀(guān)察化舊知為新知,造成學(xué)生認知沖突。

  (2)聯(lián)想轉化:學(xué)生通過(guò)分析、探索、得出解決問(wèn)題的方法。

  (3)動(dòng)手實(shí)驗:通過(guò)作圖、實(shí)驗、從而得出一般解題步驟。

  (4)練習鞏固:讓學(xué)生知道數學(xué)重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。

  四.說(shuō)教學(xué)程序

  1、導入課題: 由一個(gè)不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問(wèn)題,造成學(xué)生認知沖突。

  3、導學(xué)達標之一:創(chuàng )設情境、形成概念

  通過(guò)引例的問(wèn)題讓學(xué)生探索解決新問(wèn)題的方法。

  (設計意圖:利用已經(jīng)學(xué)過(guò)的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,從而提高學(xué)生數學(xué)的地提出、分析和解決問(wèn)題的能力。)

  然后老師逐步引導,動(dòng)手實(shí)驗,化抽象為直觀(guān)。從而得到解決此類(lèi)問(wèn)題的方法,并對比引例給出相關(guān)概念:線(xiàn)性約束條件、目標函數、線(xiàn)性目標函數、線(xiàn)性規劃、可行解、可行域、最優(yōu)解。并能根據引例提煉線(xiàn)性規劃問(wèn)題的解法——圖解法。

  (設計意圖:引導學(xué)生觀(guān)察和分析問(wèn)題,激發(fā)學(xué)生的探索欲望,從而培養學(xué)生的解決問(wèn)題和總結歸納的能力。)

  4.導學(xué)達標之二:針對問(wèn)題、舉例講解、形成技能

  例一:課本61頁(yè)例3

  (創(chuàng )設意境:,練習是使學(xué)生明白數學(xué)來(lái)源于實(shí)際又運用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。)

  6.鞏固目標:

  練習一:學(xué)生做課堂練習P64例4

  (叫學(xué)生提出解決問(wèn)題的方法,并用多媒體展示,并根據問(wèn)題的實(shí)際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)

  練習二:為了賺大錢(qián),老張最近承包了一家具廠(chǎng),可老張卻悶悶不樂(lè ),原來(lái)家具廠(chǎng)有方木料90m3,五合板600m2,老張準備加工成書(shū)桌和書(shū)廚出售,他通過(guò)調查了解到:生產(chǎn)每張書(shū)桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書(shū)櫥需要方木料0.2m3、五合板1m2,出售一張書(shū)桌可獲利潤80元,出售一個(gè)書(shū)櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問(wèn)題)

  (設計意圖:通過(guò)實(shí)際問(wèn)題,激發(fā)學(xué)生興趣,培養學(xué)生的數學(xué)應用意識,力求學(xué)生能夠對現實(shí)生活中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。)

  7.歸納與小結:

  小結本課的主要學(xué)習內容是什么?(由師生共同來(lái)完成本課小結)

  (創(chuàng )設意境:讓學(xué)生參與小結,引導學(xué)生對所學(xué)知識進(jìn)行反思,有利于加強學(xué)生記憶和形成良好的數學(xué)思維習慣)

  8.布置作業(yè):

  P64. 2

  五.說(shuō)板書(shū)設計

  板書(shū)設計為表格式,這樣的板書(shū)簡(jiǎn)明清楚,重點(diǎn)突出,加深學(xué)生對重點(diǎn)知識的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。

【高中數學(xué)說(shuō)課稿】相關(guān)文章:

高中數學(xué)的說(shuō)課稿04-19

高中數學(xué)優(yōu)秀說(shuō)課稿03-08

高中數學(xué)《集合》說(shuō)課稿07-08

高中數學(xué)《數列》說(shuō)課稿01-18

高中數學(xué)說(shuō)課稿06-13

高中數學(xué)數列說(shuō)課稿06-07

高中數學(xué)數列說(shuō)課稿(優(yōu)秀)07-16

【優(yōu)秀】高中數學(xué)說(shuō)課稿03-01

關(guān)于高中數學(xué)說(shuō)課稿05-15

高中數學(xué)說(shuō)課稿(集合)06-17

一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看