一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看

高中數學(xué)說(shuō)課稿

時(shí)間:2021-08-12 14:09:01 高中說(shuō)課稿 我要投稿

精選高中數學(xué)說(shuō)課稿范文集錦六篇

  作為一名為他人授業(yè)解惑的教育工作者,總不可避免地需要編寫(xiě)說(shuō)課稿,借助說(shuō)課稿可以有效提高教學(xué)效率。怎樣寫(xiě)說(shuō)課稿才更能起到其作用呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿6篇,歡迎閱讀與收藏。

精選高中數學(xué)說(shuō)課稿范文集錦六篇

高中數學(xué)說(shuō)課稿 篇1

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了方程、不等式、函數知識的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。

  (二)教學(xué)內容

  本節內容分2課時(shí)學(xué)習。本課時(shí)通過(guò)二次函數的圖象探索一元二次不等式的解集。通過(guò)復習“三個(gè)一次”的關(guān)系,即一次函數與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。

  二、教學(xué)目標分析

  根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高一學(xué)生的認知規律,本節課的教學(xué)目標確定為:

  知識目標——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過(guò)看圖象找解集,培養學(xué)生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數學(xué)中最基本的不等式之一,是解決許多數學(xué)問(wèn)題的重要工具。本節課的重點(diǎn)確定為:一元二次不等式的解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點(diǎn)的橫坐標的內在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

  (一)學(xué)法指導

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。

  (二)教法分析

  本節課設計的指導思想是:現代認知心理學(xué)——建構主義學(xué)習理論。

  建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

  本節課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。

  五、課堂設計

  本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。

  (一)創(chuàng )設情景,引出“三個(gè)一次”的關(guān)系

  本節課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構造懸念,激活學(xué)生的思維興趣。

  為此,我設計了以下幾個(gè)問(wèn)題:

  1、請同學(xué)們解以下方程和不等式:

 、2x-7=0;②2x-7>0;③2x-7<0

  學(xué)生回答,我板書(shū)

高中數學(xué)說(shuō)課稿 篇2

  一、說(shuō)教材

  1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。

  2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。

  二、說(shuō)教學(xué)目標

  根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:

  1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。

  2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。

  三、說(shuō)教法

  本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。

  四、說(shuō)學(xué)法

  我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。

  好學(xué)教育:

  因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。

高中數學(xué)說(shuō)課稿 篇3

  各位評委、各位老師:大家好!

  我叫李長(cháng)杉,來(lái)自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說(shuō)課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個(gè)問(wèn)題,從教材內容分析、教法學(xué)法分析、教學(xué)過(guò)程分析和課堂意外預案等幾個(gè)方面逐一加以分析和說(shuō)明。

  一。教材內容分析:

  1.本節課內容在整個(gè)教材中的地位和作用。

  概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。

  2.教學(xué)目標定位。

  根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。

  3.教學(xué)重點(diǎn)、難點(diǎn)確定。

  本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。

  二。教法學(xué)法分析:

  數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中"教師為主導,學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。

  三。教學(xué)過(guò)程分析:

  1.創(chuàng )設情景——引入新課。我們常說(shuō)"興趣是最好的老師",長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)練習題組,一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學(xué)生,利用上面解練習題組1的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習中。

  2.探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本19頁(yè)例3、例4作為題組(二),繼續讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。

  3.啟發(fā)引導——形成結論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為"三步曲"法)。

  4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本21頁(yè)練習1-4題。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高練習題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

  四。課堂意外預案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到"意外"的問(wèn)題,我在平時(shí)的教學(xué)中重視對"課堂意外預案"的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)"意外預案".

  1.學(xué)生在做課本練習1(x+2)(x-3)>0 時(shí),可能會(huì )問(wèn)到轉化為不等式組{ 或{ 求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。

  2.根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為不等式組{ 來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上面的轉化不是等價(jià)轉化。

  以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家、各位同仁批評指正。謝謝大家!

高中數學(xué)說(shuō)課稿 篇4

  大家好!~今天我要講的是必修課程數學(xué)1中《集合》的相關(guān)內容。

  一、教材分析

  集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。

  本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標

  1、學(xué)習目標

 。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;

 。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

  2、能力目標

 。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。

 。2)準確理解集合與及集合內的元素之間的關(guān)系。

  3、情感目標

  通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;

 。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。

  五、學(xué)習方法

 。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。

 。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培

  優(yōu)扶差,滿(mǎn)足不同!

  六、教學(xué)思路

  具體的思路如下

  復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。

  一、 引入課題

  軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)集合有那些概念?

 。2)集合有那些符號?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類(lèi)?

 。ㄒ唬┘系挠嘘P(guān)概念

 。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,

  都可以稱(chēng)作對象。

 。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由

  這些對象的全體構成的集合。

 。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素。

  集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??

  1。 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

  對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě)。 (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

 。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了。

 。2)互異性:集合中的元素一定是不同的。

 。3)無(wú)序性:集合中的元素沒(méi)有固定的順序。

  4、集合分類(lèi)

  根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):

 。1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個(gè)元素的集合叫做有限集

 。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

 。1)非負整數集(自然數集):全體非負整數的集合。記作N

 。2)正整數集:非負整數集內排除0的集。記作N*或N+

 。3)整數集:全體整數的集合。記作Z

 。4)有理數集:全體有理數的集合。記作Q

 。5)實(shí)數集:全體實(shí)數的集合。記作R

  注:(1)自然數集包括數0。

 。2)非負整數集內排除0的集。記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

 。ǘ┘系谋硎痉椒

  我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

 。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

 。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。

  如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說(shuō)明:(課本P5最后一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。

  說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

 。ㄈ┱n堂練習(課本P6練習)

  三、 歸納小結與作業(yè)

  本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書(shū)面作業(yè):習題1。1,第1— 4題

高中數學(xué)說(shuō)課稿 篇5

  各位老師:

  大家好!

  我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著(zhù)前面學(xué)過(guò)的隨機事件的概率及其性質(zhì),又是以后學(xué)習條件概率的基礎,起到承前啟后的作用。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):理解古典概型及其概率計算公式。

  難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉化成古典概型。

  二、教學(xué)目標分析

  1.知識與技能目標

 。1)通過(guò)試驗理解基本事件的概念和特點(diǎn)

 。2)在數學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導出古典概型下的概率的計算公式。

  2、過(guò)程與方法:

  經(jīng)歷公式的推導過(guò)程,體驗由特殊到一般的數學(xué)思想方法。

  3、情感態(tài)度與價(jià)值觀(guān):

 。1)用具有現實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習興趣,培養學(xué)生勇于探索,善于發(fā)現的創(chuàng )新思想。

 。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應用于實(shí)踐"的辨證思想。

  三、教法與學(xué)法分析

  1、教法分析:根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。

  2、學(xué)法分析:學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。

 、鍎(chuàng )設情景、引入新課

  在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗:

  試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由代表匯總;

  試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由代表匯總。

  在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出兩個(gè)問(wèn)題。

  1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?

  不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。

  2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?]

  「設計意圖」通過(guò)課前的模擬實(shí)驗,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。

 、嫠伎冀涣、形成概念

  學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深對新概念的理解。

  [基本事件有如下的兩個(gè)特點(diǎn):

 。1)任何兩個(gè)基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「設計意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。

  例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?

  先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。

  「設計意圖」將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)

  觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):

  讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。

  [經(jīng)概括總結后得到:

 。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)

 。2)每個(gè)基本事件出現的可能性相等。(等可能性)

  我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。

  「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的`能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。

 、缬^(guān)察分析、推導方程

  問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

  教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:

  「設計意圖」鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。

  提問(wèn):

 。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?

 。2)在使用古典概型的概率公式時(shí),應該注意什么?

  「設計意圖」教師提問(wèn),學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。

 、枥}分析、推廣應用

  例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?

  學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。

  「設計意圖」讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。鞏固學(xué)生對已學(xué)知識的掌握。

  例3同時(shí)擲兩個(gè)骰子,計算:

 。1)一共有多少種不同的結果?

 。2)其中向上的點(diǎn)數之和是5的結果有多少種?

 。3)向上的點(diǎn)數之和是5的概率是多少?

  先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。

  「設計意圖」利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。

 、樘骄克枷、鞏固深化

  問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?

  要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。

  「設計意圖」通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是--研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。

 、昕偨Y概括、加深理解

  1.基本事件的特點(diǎn)

  2.古典概型的特點(diǎn)

  3.古典概型的概率計算公式

  學(xué)生小結歸納,不足的地方老師補充說(shuō)明。

  「設計意圖」使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。

 、氩贾米鳂I(yè)

  課本練習1、2、3

  「設計意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。

高中數學(xué)說(shuō)課稿 篇6

  【教材分析】

  1、本節教材的地位與作用

  本節主要研究閉區間上的連續函數最大值和最小值的求法和實(shí)際應用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì )求某些函數的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會(huì )求可導函數的極值之后進(jìn)行學(xué)習的,學(xué)好這一節,學(xué)生將會(huì )求更多的函數的最值,運用本節知識可以解決科技、經(jīng)濟、社會(huì )中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節課集中體現了數形結合、理論聯(lián)系實(shí)際等重要的數學(xué)思想方法,學(xué)好本節,對于進(jìn)一步完善學(xué)生的知識結構,培養學(xué)生用數學(xué)的意識都具有極為重要的意義。

  2、教學(xué)重點(diǎn)

  會(huì )求閉區間上連續開(kāi)區間上可導的函數的最值。

  3、教學(xué)難點(diǎn)

  高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優(yōu)化解題過(guò)程依據的理解會(huì )有較大的困難,所以這節課的難點(diǎn)是理解確定函數最值的方法。

  4、教學(xué)關(guān)鍵

  本節課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點(diǎn)。

  【教學(xué)目標】

  根據本節教材在高中數學(xué)知識體系中的地位和作用,結合學(xué)生已有的認知水平,制定本節如下的教學(xué)目標:

  1、知識和技能目標

 。1)理解函數的最值與極值的區別和聯(lián)系。

 。2)進(jìn)一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。

 。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。

  2、過(guò)程和方法目標

 。1)了解開(kāi)區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。

 。2)理解閉區間上的連續函數最值存在的可能位置:極值點(diǎn)處或區間端點(diǎn)處。

 。3)會(huì )求閉區間上連續,開(kāi)區間內可導的函數的最大、最小值。

  3、情感和價(jià)值目標

 。1)認識事物之間的的區別和聯(lián)系。

 。2)培養學(xué)生觀(guān)察事物的能力,能夠自己發(fā)現問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。

 。3)提高學(xué)生的數學(xué)能力,培養學(xué)生的創(chuàng )新精神、實(shí)踐能力和理性精神。

  【教法選擇】

  根據皮亞杰的建構主義認識論,知識是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。

  本節課在幫助學(xué)生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學(xué)生通過(guò)觀(guān)察閉區間內的連續函數的幾個(gè)圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進(jìn)而探索出函數最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識,老師只是進(jìn)行適當的引導,而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節課主要選擇以合作探究式教學(xué)法組織教學(xué)。

  【學(xué)法指導】

  對于求函數的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎,剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運用于更多更復雜函數的求最值問(wèn)題?教學(xué)設計中注意激發(fā)起學(xué)生強烈的求知欲望,使得他們能積極主動(dòng)地觀(guān)察、分析、歸納,以形成認識,參與到課堂活動(dòng)中,充分發(fā)揮他們作為認知主體的作用。

  【教學(xué)過(guò)程】

  本節課的教學(xué),大致按照“創(chuàng )設情境,鋪墊導入——合作學(xué)習,探索新知——指導應用,鼓勵創(chuàng )新——歸納小結,反饋回授”四個(gè)環(huán)節進(jìn)行組織。

【精選高中數學(xué)說(shuō)課稿范文集錦六篇】相關(guān)文章:

精選高中數學(xué)說(shuō)課稿范文集錦9篇08-13

精選高中數學(xué)說(shuō)課稿范文集錦10篇08-11

精選高中數學(xué)說(shuō)課稿范文集錦7篇08-11

精選高中數學(xué)說(shuō)課稿范文集錦五篇08-06

精選高中數學(xué)說(shuō)課稿范文集錦8篇07-31

精選高中數學(xué)說(shuō)課稿范文集錦5篇06-26

精選高中數學(xué)說(shuō)課稿集錦6篇06-20

精選高中數學(xué)說(shuō)課稿范文集錦七篇08-20

高中數學(xué)經(jīng)典說(shuō)課稿范文06-24

一级日韩免费大片,亚洲一区二区三区高清,性欧美乱妇高清come,久久婷婷国产麻豆91天堂,亚洲av无码a片在线观看