初二數學(xué)學(xué)習的方法指導
導語(yǔ):數學(xué),是研究數量、結構、變化、空間以及信息等概念的一門(mén)學(xué)科,從某種角度看屬于形式科學(xué)的一種。那么,同學(xué)們,你們知道學(xué)好數學(xué)的方法嗎?下面就讓小編為大家介紹一下吧!歡迎閱讀!

篇一:初二數學(xué)學(xué)習方法指導
一、課內重視聽(tīng)講,課后及時(shí)復習。
新知識的接受,數學(xué)能力的培養主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內的學(xué)習效率,尋求正確的學(xué)習方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識與基本技能的學(xué)習,課后要及時(shí)復習不留疑點(diǎn)。首先要在做各種習題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,慶盡量回憶而不采用不清楚立即翻書(shū)之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問(wèn)的學(xué)習作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應讓自己冷靜下來(lái)認真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習中要進(jìn)行整理與歸納總結,把知識的點(diǎn)、線(xiàn)、面結合起來(lái)交織成知識網(wǎng)絡(luò ),納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學(xué)好數學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫(xiě)出自己的解題思路與正確的解題過(guò)程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現的解題習慣與平時(shí)練習無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的。
三、調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個(gè)方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會(huì )嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見(jiàn),要把數學(xué)學(xué)好就得找到適合自己的學(xué)習方法,了解數學(xué)學(xué)科的特點(diǎn),使自己進(jìn)入數學(xué)的廣闊天地中去。
篇二:初二數學(xué)學(xué)習方法指導
一、該記的'記,該背的背,不要以為理解了就行
有的同學(xué)認為,數學(xué)不像英語(yǔ)、史地,要背單詞、背年代、背地名,數學(xué)靠的是智慧、技巧與推理。我說(shuō)你只講對了一半。數學(xué)同樣也離不開(kāi)記憶。試想一下,小學(xué)的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運算嗎?盡管你理解了乘法是相同加數的與的運算,但你在做9*9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來(lái)的。同時(shí),數學(xué)中還有大量的規定需要記憶,比如規定(a≠0)等等。
因此,我覺(jué)得數學(xué)更像游戲,它有許多游戲規則(即數學(xué)中的定義、法則、公式、定理等),誰(shuí)記住了這些游戲規則,誰(shuí)就能順利地做游戲;誰(shuí)違反了這些游戲規則,誰(shuí)就被判錯,罰下。因此,數學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。
在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì )對今后的學(xué)習造成很大的麻煩,因為今后的學(xué)習將會(huì )大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來(lái)的,二者是相反方向的變形。
對數學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎上、在應用它們解決問(wèn)題時(shí)再加深理解。打一個(gè)比方,數學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒(méi)有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝與智慧,就可以打出各式各樣精美的家具。同樣,記不住數學(xué)的定義、法則、公式、定理就很難解數學(xué)題。而記住了這些再配以一定的方法、技巧與敏捷的思維,就能在解數學(xué)題,甚至是解數學(xué)難題中得心應手。
二、幾個(gè)重要的數學(xué)思想
1、“方程”的思想
數學(xué)是研究事物的空間形式與數量關(guān)系的,初中最重要的數量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運動(dòng)中,路程、速度與時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度*時(shí)間=路程,在這樣的等式中,一般會(huì )有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。我們在小學(xué)就已經(jīng)接觸過(guò)簡(jiǎn)易方程,而初一則比較系統地學(xué)習解一元一次方程,并總結出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì )并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來(lái)。
初二、初三我們還將學(xué)習解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習指數方程、對數方程、線(xiàn)性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過(guò)一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現實(shí)中的大量實(shí)際應用,都需要建立方程,通過(guò)解方程來(lái)求出結果。因此,同學(xué)們一定要將解一元一次方程與解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數學(xué)問(wèn)題,特別是現實(shí)當中碰到的未知量與已知量的錯綜復雜的關(guān)系,善于用“方程”的觀(guān)點(diǎn)去構建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數形結合”的思想
大千世界,“數”與“形”無(wú)處不在。任何事物,剝去它的質(zhì)的方面,只剩下形狀與大小這兩個(gè)屬性,就交給數學(xué)去研究了。初中數學(xué)的兩個(gè)分支?-代數與幾何,代數是研究“數”的,幾何是研究“形”的。但是,研究代數要借助“形”,研究幾何要借助“數”,“數形結合”是一種趨勢,越學(xué)下去,“數”與“形”越密不可分,到了高中,就出現了專(zhuān)門(mén)用代數方法去研究幾何問(wèn)題的一門(mén)課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數的問(wèn)題就離不開(kāi)圖象了。往往借助圖象能使問(wèn)題明朗化,比較容易找到問(wèn)題的關(guān)鍵所在,從而解決問(wèn)題。
在今后的數學(xué)學(xué)習中,要重視“數形結合”的思維訓練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應該根據題意畫(huà)出草圖來(lái)分析一番,這樣做,不但直觀(guān),而且全面,整體性強,容易找出切入點(diǎn),對解題大有益處。嘗到甜頭的人慢慢會(huì )養成一種“數形結合”的好習慣。
【初二數學(xué)學(xué)習的方法指導】相關(guān)文章:
小學(xué)語(yǔ)文的學(xué)習指導方法10-18
考研數學(xué)復習指導方法01-17
韓語(yǔ)學(xué)習方法指導09-12
學(xué)習唱歌的練聲方法指導09-15