有關(guān)高中數學(xué)說(shuō)課稿模板匯總六篇
作為一位兢兢業(yè)業(yè)的人民教師,就有可能用到說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。那要怎么寫(xiě)好說(shuō)課稿呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿6篇,歡迎大家分享。

高中數學(xué)說(shuō)課稿 篇1
我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。
二、教學(xué)目標
根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:
知識目標:
1、了解曲線(xiàn)上的點(diǎn)與方程的`解之間的一一對應關(guān)系;
2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;
3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;
2、在形成曲線(xiàn)和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。
情感目標:
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;
2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。
高中數學(xué)說(shuō)課稿 篇2
一、地位作用
數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。
基于此,設計本節的數學(xué)思路上:
利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。
二、教學(xué)目標
知識目標:1)理解等比數列的概念
2)掌握等比數列的通項公式
3)并能用公式解決一些實(shí)際問(wèn)題
能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的`能力。
三、教學(xué)重點(diǎn)
1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)
2)等比數列的通項公式的推導及應用
四、教學(xué)難點(diǎn)
“等比”的理解及利用通項公式解決一些問(wèn)題。
五、教學(xué)過(guò)程設計
(一)預習自學(xué)環(huán)節。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問(wèn)題
1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。
2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉(gè)是等比數列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
、酃萹=1時(shí)是什么數列?
、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?
3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?
4)等比數列通項公式與函數關(guān)系怎樣?
(二)歸納主導與總結環(huán)節(15分鐘)
這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。
通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;
、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。
、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。
通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。
法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。
法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。
高中數學(xué)說(shuō)課稿 篇3
一、教材分析
1、教學(xué)內容
本節課內容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2、教材的地位和作用
函數單調性是高中數學(xué)中相當重要的一個(gè)基礎知識點(diǎn),是研究和討論初等函數有關(guān)性質(zhì)的基礎。掌握本節內容不僅為今后的函數學(xué)習打下理論基礎,還有利于培養學(xué)生的抽象思維能力,及分析問(wèn)題和解決問(wèn)題的能力。
3、教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵
教學(xué)重點(diǎn):函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個(gè)局部概念。
教學(xué)難點(diǎn):領(lǐng)會(huì )函數單調性的實(shí)質(zhì)與應用,明確單調性是一個(gè)局部的概念。
教學(xué)關(guān)鍵:從學(xué)生的學(xué)習心理和認知結構出發(fā),講清楚概念的形成過(guò)程、
4、學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強。
二、目標分析
。ㄒ唬┲R目標:
1、知識目標:理解函數單調性的概念,掌握判斷一些簡(jiǎn)單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說(shuō)出函數的單調區間。
2、能力目標:通過(guò)證明函數的單調性的學(xué)習,使學(xué)生體驗和理解從特殊到一般的數學(xué)歸納推理思維方式,培養學(xué)生的觀(guān)察能力,分析歸納能力,領(lǐng)會(huì )數學(xué)的歸納轉化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動(dòng)構建的能力。
3、情感目標:讓學(xué)生積極參與觀(guān)察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識的過(guò)程中體會(huì )成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會(huì )用運動(dòng)變化的觀(guān)點(diǎn)去觀(guān)察分析事物的方法。通過(guò)滲透數形結合的數學(xué)思想,對學(xué)生進(jìn)行辨證唯物主義的思想教育。
。ǘ┻^(guò)程與方法
培養學(xué)生嚴密的邏輯思維能力以及用運動(dòng)變化、數形結合、分類(lèi)討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì),通過(guò)函數的單調性的學(xué)習,掌握自變量和因變量的關(guān)系。通過(guò)多媒體手段激發(fā)學(xué)生學(xué)習興趣,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題和解題的邏輯推理能力。
三、教法與學(xué)法
1、教學(xué)方法
在教學(xué)中,要注重展開(kāi)探索過(guò)程,充分利用好函數圖象的直觀(guān)性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節課采用問(wèn)答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著(zhù)主導作用,讓學(xué)生在教師的提問(wèn)中自覺(jué)的發(fā)現新知,探究新知,并且加入激勵性的語(yǔ)言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過(guò)程。
2、學(xué)習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學(xué)生學(xué)習的主要方式。
四、過(guò)程分析
本節課的教學(xué)過(guò)程包括:?jiǎn)?wèn)題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個(gè)板塊。這里分別就其過(guò)程和設計意圖作一一分析。
。ㄒ唬﹩(wèn)題情景:
為了激發(fā)學(xué)生的`學(xué)習興趣,本節課借助多媒體設計了多個(gè)生活背景問(wèn)題,并就圖表和圖象所提供的信息,提出一系列問(wèn)題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習興趣和求知欲望,為學(xué)習函數的單調性做好鋪墊。(祥見(jiàn)課件)
新課程理念認為:情境應貫穿課堂教學(xué)的始終。本節課所創(chuàng )設的生活情境,讓學(xué)生親近數學(xué),感受到數學(xué)就在他們的周?chē),強化學(xué)生的感性認識,從而達到學(xué)生對數學(xué)的理解。讓學(xué)生在課堂的一開(kāi)始就感受到數學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì )用數學(xué)的眼光去關(guān)注生活。
。ǘ┖瘮祮握{性的定義引入
1、幾何畫(huà)板動(dòng)畫(huà)演示,請學(xué)生認真觀(guān)察,并回答問(wèn)題:通過(guò)學(xué)生已學(xué)過(guò)的函數y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數單調性有感性認識。,進(jìn)行比較,分析其變化趨勢。并探討、回答以下問(wèn)題:
問(wèn)題1、觀(guān)察下列函數圖象,從左向右看圖象的變化趨勢?
問(wèn)題2:你能明確說(shuō)出“圖象呈上升趨勢”的意思嗎?
通過(guò)學(xué)生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時(shí),函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來(lái)描述上升的圖象?
通過(guò)問(wèn)題逐步向抽象的定義靠攏,將圖形語(yǔ)言轉化為數學(xué)符號語(yǔ)言。幾何畫(huà)板的靈活使用,數形有機結合,引導學(xué)生從圖形語(yǔ)言到數學(xué)符號語(yǔ)言的翻譯變得輕松。
設計意圖:
、偻ㄟ^(guò)學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習興趣和學(xué)習熱情,同時(shí)也可以培養學(xué)生觀(guān)察、猜想、歸納的思維能力和創(chuàng )新意識,增強學(xué)生自主學(xué)習、獨立思考,由學(xué)會(huì )向會(huì )學(xué)的轉化,形成良好的思維品質(zhì)。
、谕ㄟ^(guò)學(xué)生已學(xué)過(guò)的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數單調性有感性認識。
、蹚膶W(xué)生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區的理論”要求。
、軓膱D形、直觀(guān)認識入手,研究單調性的概念,其本身就是研究、學(xué)習數學(xué)的一種方法,符合新課程的理念。
。ㄈ┰龊瘮、減函數的定義
在前面的基礎上,讓學(xué)生討論歸納:如何使用數學(xué)語(yǔ)言來(lái)準確描述函數的單調性?在學(xué)生回答的基礎上,給出增函數的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。
定義中的“當x1x2時(shí),都有f(x1) 注意: 。1)函數的單調性也叫函數的增減性; 。2)注意區間上所取兩點(diǎn)x1,x2的任意性; 。3)函數的單調性是對某個(gè)區間而言的,它是一個(gè)局部概念。 讓學(xué)生自已嘗試寫(xiě)出減函數概念,由兩名學(xué)生板演。提出單調區間的概念。 設計意圖:通過(guò)給出函數單調性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數的單調性其實(shí)也叫做函數的增減性,它是對某個(gè)區間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數在某個(gè)區間上的單調性的一般步驟。這樣處 理,同時(shí)也是讓學(xué)生感悟、體驗學(xué)習數學(xué)感念的方法,提高其個(gè)性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。 2、例2、證明函數在區間(—∞,+∞)上是減函數。 在本題的解決過(guò)程中,要求學(xué)生對照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過(guò)自己的解決,總結證明單調性問(wèn)題的一般方法。 變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么? 變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來(lái)判斷。 變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來(lái)判斷。 錯誤:實(shí)質(zhì)上并沒(méi)有證明,而是使用了所要證明的結論 例題設計意圖:在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應用數形結合的思想方法解題的意識,進(jìn)一步加深對概念的理解,同時(shí)也是依托具體問(wèn)題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進(jìn)行觀(guān)察是一種常用而又粗略的方法。嚴格地說(shuō),它需要根據單調函數的定義進(jìn)行證明。例2是教材練習題改編,通過(guò)師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過(guò)例2的解決是學(xué)生初步掌握運用概念進(jìn)行簡(jiǎn)單論證的基本方法,強化證題的規范性訓練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數學(xué)問(wèn)題。目的是進(jìn)一步強化解題的規范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì )一些常見(jiàn)的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習2,3 2、探究:二次函數的單調性有什么規律? 。◣缀萎(huà)板演示,學(xué)生探究)本問(wèn)題作為機動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。 設計意圖:通過(guò)觀(guān)察圖象,對函數是否具有某種性質(zhì)作出一種猜想,然后通過(guò)推理的辦法,證明這種猜想的正確性,是發(fā)現和解決問(wèn)題的一種常用數學(xué)方法。 通過(guò)課堂練習加深學(xué)生對概念的理解,進(jìn)一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時(shí)強化解題步驟,形成并提高解題能力。對練習的思考,讓學(xué)生學(xué)會(huì )反思、學(xué)會(huì )總結。 。┗仡櫩偨Y 通過(guò)師生互動(dòng),回顧本節課的概念、方法。本節課我們學(xué)習了函數單調性的知識,同學(xué)們要切記:?jiǎn)握{性是對某個(gè)區間而言的,同時(shí)在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進(jìn)行判斷和證明。 設計意圖:通過(guò)小結突出本節課的重點(diǎn),并讓學(xué)生對所學(xué)知識的結構有一個(gè)清晰的認識,學(xué)會(huì )一些解決問(wèn)題的思想與方法,體會(huì )數學(xué)的和諧美。 。ㄆ撸┱n外作業(yè) 1、教材p43習題1。3A組1(單調區間),2(證明單調性); 2、判斷并證明函數在上的單調性。 3、數學(xué)日記:談?wù)勀惚竟澱n中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。 設計意圖:通過(guò)作業(yè)1、2進(jìn)一步鞏固本節課所學(xué)的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學(xué)生對本結內容各項目標落實(shí)的評價(jià)。新課標要求:不同的學(xué)生學(xué)習不同的數學(xué),在數學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現。 。ㄆ撸┌鍟(shū)設計(見(jiàn)ppt) 五、評價(jià)分析 有效的概念教學(xué)是建立在學(xué)生已有知識結構基礎上,,因此在教學(xué)設計過(guò)程中注意了: 第一、教要按照學(xué)的法子來(lái)教; 第二、在學(xué)生已有知識結構和新概念間尋找“最近發(fā)展區”; 第三、強化了重探究、重交流、重過(guò)程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng )設情境——探究概念——注重反思——拓展應用——歸納總結”的活動(dòng)過(guò)程,體驗了參與數學(xué)知識的發(fā)生、發(fā)展過(guò)程,培養“用數學(xué)”的意識和能力,成為積極主動(dòng)的建構者。 本節課圍繞教學(xué)重點(diǎn),針對教學(xué)目標,以多媒體技術(shù)為依托,展現知識的發(fā)生和形成過(guò)程,使學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,激情引趣,并注重數學(xué)科學(xué)研究方法的學(xué)習,是順應新課改要求的,是研究性教學(xué)的一次有益嘗試。 一、教材分析 1、教材內容 本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1.3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題. 2、教材所處地位、作用 函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì).通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題.通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識.函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一.從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法. 3、教學(xué)目標 。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性 的方法; 。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力. 。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì). 4、重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn)(1)函數單調性的`概念; 。2)運用函數單調性的定義判斷一些函數的單調性. 教學(xué)難點(diǎn)(1)函數單調性的知識形成; 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性. 二、教法分析與學(xué)法指導 本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意: 1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性. 2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決. 3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用.具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達. 4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性. 在學(xué)法上: 1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力. 2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍. 一、教材地位與作用 本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。 二、學(xué)情分析 作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數,特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問(wèn)題,就比較困難。 教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。 根據我的教學(xué)內容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標 教學(xué)目標分析: 知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。 能力目標:探索正弦定理的證明過(guò)程,用歸納法得出結論。 情感目標:通過(guò)推導得出正弦定理,讓學(xué)生感受數學(xué)公式的整潔對稱(chēng)美和數學(xué)的實(shí)際應用價(jià)值。 三、教法學(xué)法分析 教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。 學(xué)法:指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,動(dòng)手嘗試相結合,增強學(xué)生由特殊到一般的數學(xué)思維能力,鍥而不舍的求學(xué)精神。 四、教學(xué)過(guò)程 (一)創(chuàng )設情境,布疑激趣 “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。 (二)探尋特例,提出猜想 1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。 3.讓學(xué)生總結實(shí)驗結果,得出猜想: 在三角形中,角與所對的邊滿(mǎn)足關(guān)系 這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的.認識從感性逐步上升到理性。 (三)邏輯推理,證明猜想 1.強調將猜想轉化為定理,需要嚴格的理論證明。 2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。 3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。 4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明。 (四)歸納總結,簡(jiǎn)單應用 1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。 2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。 3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。 (五)講解例題,鞏固定理 1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。 例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。 2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。 例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。 (六)課堂練習,提高鞏固 1.在△ABC中,已知下列條件,解三角形。 (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm 2.在△ABC中,已知下列條件,解三角形。 (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115° 學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。 (七)小結反思,提高認識 通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )? 1.用向量證明了正弦定 理,體現了數形結合的數學(xué)思想。 2.它表述了三角形的邊與對角的正弦值的關(guān)系。 3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。 (從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。) (八)任務(wù)后延,自主探究 如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節內容,余弦定理。布置作業(yè),預習下一節內容。 說(shuō)課內容:普通高中課程標準實(shí)驗教科書(shū)(人教A版)《數學(xué)必修4》第二章第四節“平面向量的數量積”的第一課時(shí)---平面向量數量積的物理背景及其含義。 下面,我從背景分析、教學(xué)目標設計、課堂結構設計、教學(xué)過(guò)程設計、教學(xué)媒體設計及教學(xué)評價(jià)設計六個(gè)方面對本節課的思考進(jìn)行說(shuō)明。 一、 背景分析 1、學(xué)習任務(wù)分析 平面向量的數量積是繼向量的線(xiàn)性運算之后的又一重要運算,也是高中數學(xué)的一個(gè)重要概念,在數學(xué)、物理等學(xué)科中應用十分廣泛。本節內容教材共安排兩課時(shí),其中第一課時(shí)主要研究數量積的概念,第二課時(shí)主要研究數量積的坐標運算,本節課是第一課時(shí)。 本節課的主要學(xué)習任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質(zhì)與運算律,使學(xué)生體會(huì )類(lèi)比的思想方法,進(jìn)一步培養學(xué)生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎。同時(shí)也因為在這個(gè)概念中,既有長(cháng)度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點(diǎn),不僅應用廣泛,而且很好的體現了數形結合的數學(xué)思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學(xué)的重點(diǎn)。 2、學(xué)生情況分析 學(xué)生在學(xué)習本節內容之前,已熟知了實(shí)數的運算體系,掌握了向量的概念及其線(xiàn)性運算,具備了功等物理知識,并且初步體會(huì )了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數運算類(lèi)比的基礎上研究性質(zhì)和運算律。這為學(xué)生學(xué)習數量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數量積概念的理解,一方面,相對于線(xiàn)性運算而言,數量積的結果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數的向量經(jīng)過(guò)數量積運算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數乘法運算的影響,也會(huì )造成學(xué)生對數量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節課教學(xué)的難點(diǎn)數量積的概念。 二、 教學(xué)目標設計 《普通高中數學(xué)課程標準(實(shí)驗)》 對本節課的要求有以下三條: (1)通過(guò)物理中“功”等事例,理解平面向量數量積的含義及其物理意義。 (2)體會(huì )平面向量的數量積與向量投影的關(guān)系。 (3)能用運數量積表示兩個(gè)向量的夾角,會(huì )用數量積判斷兩個(gè)平面向量的垂直關(guān)系。 從以上的背景分析可以看出,數量積的概念既是本節課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計算和判斷的理論依據。最后,無(wú)論是數量積的性質(zhì)還是運算律,都希望學(xué)生在類(lèi)比的基礎上,通過(guò)主動(dòng)探究來(lái)發(fā)現,因而對培養學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。 綜上所述,結合“課標”要求和學(xué)生實(shí)際,我將本節課的教學(xué)目標定為: 1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義; 2、體會(huì )平面向量的數量積與向量投影的關(guān)系,掌握數量積的性質(zhì)和運算律, 并能運用性質(zhì)和運算律進(jìn)行相關(guān)的運算和判斷; 3、體會(huì )類(lèi)比的數學(xué)思想和方法,進(jìn)一步培養學(xué)生抽象概括、推理論證的能力。 三、課堂結構設計 本節課從總體上講是一節概念教學(xué),依據數學(xué)課程改革應關(guān)注知識的發(fā)生和發(fā)展過(guò)程的理念,結合本節課的知識的邏輯關(guān)系,我按照以下順序安排本節課的教學(xué): 即先從數學(xué)和物理兩個(gè)角度創(chuàng )設問(wèn)題情景,通過(guò)歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質(zhì)和運算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過(guò)例題和練習使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結提高學(xué)生認識,形成知識體系。 四、 教學(xué)媒體設計 和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來(lái)分兩節課完成的內容合并成一節,相比較而言本節課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現本節課的教學(xué)目標,考慮到本節課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設想主要有以下兩點(diǎn): 1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內容的呈現方式,以此來(lái)節約課時(shí),增加課堂容量。 2、設計科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節內容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò )。 平面向量數量積的物理背景及其含義 一、 數量積的概念 二、數量積的性質(zhì) 四、應用與提高 1、 概念: 例1: 2、 概念強調 (1)記法 例2: (2)“規定” 三、數量積的運算律 例3: 3、幾何意義: 4、物理意義: 五、 教學(xué)過(guò)程設計 課標指出:數學(xué)教學(xué)過(guò)程是教師引導學(xué)生進(jìn)行學(xué)習活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節課我主要安排以下六個(gè)活動(dòng): 活動(dòng)一:創(chuàng )設問(wèn)題情景,激發(fā)學(xué)習興趣 正如教材主編寄語(yǔ)所言,數學(xué)是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的`線(xiàn)性運算一樣,也有其數學(xué)背景和物理背景,為了體現這一點(diǎn),我設計以下幾個(gè)問(wèn)題: 問(wèn)題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結果是什么? 問(wèn)題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的? 期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應用 問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S, (1)力F所做的功W= 。 (2)請同學(xué)們分析這個(gè)公式的特點(diǎn): W(功)是 量, F(力)是 量, S(位移)是 量, α是 。 問(wèn)題1的設計意圖在于使學(xué)生了解數量積的數學(xué)背景,讓學(xué)生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線(xiàn)性運算相比,數量積運算又有其特殊性,那就是其結果發(fā)生了本質(zhì)的變化。 問(wèn)題2的設計意圖在于使學(xué)生在與向量加法類(lèi)比的基礎上明了本節課的研究方法和順序,為教學(xué)活動(dòng)指明方向。 問(wèn)題3的設計意圖在于使學(xué)生了解數量積的物理背景,讓學(xué)生知道,我們研究數量積絕不僅僅是為了數學(xué)自身的完善,而是有其客觀(guān)背景和現實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運算的愿望。同時(shí),也為抽象數量積的概念做好鋪墊。 活動(dòng)二:探究數量積的概念 1、概念的抽象 在分析“功”的計算公式的基礎上提出問(wèn)題4 問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述? 學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數量積概念的文字表述了,在此基礎上,我進(jìn)一步明晰數量積的概念。 2、概念的明晰 已知兩個(gè)非零向量 與 ,它們的夾角為 ,我們把數量 ︱ ︱·︱ ︱cos 叫做 與 的數量積(或內積),記作: · ,即: · = ︱ ︱·︱ ︱cos 在強調記法和“規定”后 ,為了讓學(xué)生進(jìn)一步認識這一概念,提出問(wèn)題5 問(wèn)題5:向量的數量積運算與線(xiàn)性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表: 角 的范圍0°≤ <90° =90°0°< ≤180° · 的符號 通過(guò)此環(huán)節不僅使學(xué)生認識到數量積的結果與線(xiàn)性運算的結果有著(zhù)本質(zhì)的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質(zhì)和運算律做好鋪墊。 3、探究數量積的幾何意義 這個(gè)問(wèn)題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。 如圖,我們把│ │cos (│ │cos )叫做向量 在 方向上( 在 方向上)的投影,記做:OB1=│ │cos 問(wèn)題6:數量積的幾何意義是什么? 這樣做不僅讓學(xué)生從“形”的角度重新認識數量積的概念,從中體會(huì )數量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節約了課時(shí)。 4、研究數量積的物理意義 數量積的概念是由物理中功的概念引出的,學(xué)習了數量積的概念后,學(xué)生就會(huì )明白功的數學(xué)本質(zhì)就是力與位移的數量積。為此,我設計以下問(wèn)題 一方面使學(xué)生嘗試計算數量積,另一方面使學(xué)生理解數量積的物理意義,同時(shí)也為數量積的性質(zhì)埋下伏筆。 問(wèn)題7: (1) 請同學(xué)們用一句話(huà)來(lái)概括功的數學(xué)本質(zhì):功是力與位移的數量積 。 (2)嘗試練習:一物體質(zhì)量是10千克,分別做以下運動(dòng): 、、在水平面上位移為10米; 、、豎直下降10米; 、、豎直向上提升10米; 、、沿傾角為30度的斜面向上運動(dòng)10米; 分別求重力做的功。 活動(dòng)三:探究數量積的運算性質(zhì) 1、性質(zhì)的發(fā)現 教材中關(guān)于數量積的三條性質(zhì)是以探究的形式出現的,為了很好地完成這一探究活動(dòng),在完成上述練習后,我不失時(shí)機地提出問(wèn)題8: (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論? (2)比較︱ · ︱與︱ ︱×︱ ︱的大小,你有什么結論? 在學(xué)生討論交流的基礎上,教師進(jìn)一步明晰數量積的性質(zhì),然后再由學(xué)生利用數量積的定義給予證明,完成探究活動(dòng)。 2、明晰數量積的性質(zhì) 3、性質(zhì)的證明 這樣設計體現了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習活動(dòng)的主體,讓學(xué)生成為學(xué)習的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習活動(dòng)的熱情,不僅使學(xué)生獲得了知識,更培養了學(xué)生由特殊到一般的思維品質(zhì)。 活動(dòng)四:探究數量積的運算律 1、運算律的發(fā)現 關(guān)于運算律,教材仍然是以探究的形式出現,為此,首先提出問(wèn)題9 問(wèn)題9:我們學(xué)過(guò)了實(shí)數乘法的哪些運算律?這些運算律對向量是否也適用? 通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎上,猜測提出數量積的運算律。 學(xué)生可能會(huì )提出以下猜測: ① · = · 、( · ) = ( · ) ③( + )· = · + · 猜測①的正確性是顯而易見(jiàn)的。 關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問(wèn)題: 猜測②的左右兩邊的結果各是什么?它們一定相等嗎? 學(xué)生通過(guò)討論不難發(fā)現,猜測②是不正確的。 這時(shí)教師在肯定猜測③的基礎上明晰數量積的運算律: 2、明晰數量積的運算律 3、證明運算律 學(xué)生獨立證明運算律(2) 我把運算運算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題: 當λ<0時(shí),向量 與λ , 與λ 的方向 的關(guān)系如何?此時(shí),向量λ 與 及 與λ 的夾角與向量 與 的夾角相等嗎? 師生共同證明運算律(3) 運算律(3)的證明對學(xué)生來(lái)說(shuō)是比較困難的,為了節約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。 在這個(gè)環(huán)節中,我仍然是首先為學(xué)生創(chuàng )設情景,讓學(xué)生在類(lèi)比的基礎上進(jìn)行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學(xué)生推理論證的能力,同時(shí)也增強了學(xué)生類(lèi)比創(chuàng )新的意識,將知識的獲得和能力的培養有機的結合在一起。 活動(dòng)五:應用與提高 例1、(師生共同完成)已知︱ ︱=6,︱ ︱=4, 與 的夾角為60°,求 ( +2 )·( -3 ),并思考此運算過(guò)程類(lèi)似于哪種運算? 例2、(學(xué)生獨立完成)對任意向量 ,b是否有以下結論: (1)( + )2= 2+2 · + 2 (2)( + )·( - )= 2— 2 例3、(師生共同完成)已知︱ ︱=3,︱ ︱=4, 且 與 不共線(xiàn),k為何值時(shí),向量 +k 與 -k 互相垂直?并思考:通過(guò)本題你有什么收獲? 本節教材共安排了四道例題,我根據學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質(zhì)和運算律的綜合應用,教學(xué)時(shí),我重點(diǎn)從對運算原理的分析和運算過(guò)程的規范書(shū)寫(xiě)兩個(gè)方面加強示范。完成計算后,進(jìn)一步提出問(wèn)題:此運算過(guò)程類(lèi)似于哪種運算?目的是想讓學(xué)生在類(lèi)比多項式乘法的基礎上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養了學(xué)生通過(guò)類(lèi)比這一思維模式達到創(chuàng )新的目的。例3的主要作用是,在繼續鞏固性質(zhì)和運算律的同時(shí),教給學(xué)生如何利用數量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數量積的基本應用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數與形的轉化原理。 為了使學(xué)生更好的理解數量積的含義,熟練掌握性質(zhì)及運算律,并能夠應用數量積解決有關(guān)問(wèn)題,再安排如下練習: 1、 下列兩個(gè)命題正確嗎?為什么? 、、若 ≠0,則對任一非零向量 ,有 · ≠0. 、、若 ≠0, · = · ,則 = . 2、已知△ABC中, = , = ,當 · <0或 · =0時(shí),試判斷△ABC的形狀。 安排練習1的主要目的是,使學(xué)生在與實(shí)數乘法比較的基礎上全面認識數量積這一重要運算, 通過(guò)練習2使學(xué)生學(xué)會(huì )用數量積表示兩個(gè)向量的夾角,進(jìn)一步感受數量積的應用價(jià)值。 活動(dòng)六:小結提升與作業(yè)布置 1、本節課我們學(xué)習的主要內容是什么? 2、平面向量數量積的兩個(gè)基本應用是什么? 3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運算律的探究過(guò)程中,滲透了哪些數學(xué)思想? 4、類(lèi)比向量的線(xiàn)性運算,我們還應該怎樣研究數量積? 通過(guò)上述問(wèn)題,使學(xué)生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時(shí)也為下 一節做好鋪墊,繼續激發(fā)學(xué)生的求知欲。 布置作業(yè): 1、課本P121習題2.4A組1、2、3。 2、拓展與提高: 已知 與 都是非零向量,且 +3 與7 -5 垂直, -4 與 7 -2 垂直求 與 的夾角。 在這個(gè)環(huán)節中,我首先考慮檢測全體學(xué)生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學(xué)生繼續加深對數量積概念的理解和應用,為后續學(xué)習打好基礎。其次,為了能讓不同的學(xué)生在數學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。 六、教學(xué)評價(jià)設計 評價(jià)方式的轉變是新課程改革的一大亮點(diǎn),課標指出:相對于結果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現出學(xué)生成長(cháng)的歷程。因此,數學(xué)學(xué)習的評價(jià)既要重視結果,也要重視過(guò)程。結合“課標”對數學(xué)學(xué)習的評價(jià)建議,對本節課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行: 1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現其思維過(guò)程,在鼓勵的基礎上,糾正偏差,并對其進(jìn)行定 性的評價(jià)。 2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀(guān)察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現做出評價(jià),以此來(lái)調動(dòng)學(xué)生參與活動(dòng)的積極性。 3、 通過(guò)練習來(lái)檢驗學(xué)生學(xué)習的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。 4、 通過(guò)作業(yè),反饋信息,再次對本節課做出評價(jià),以便查漏補缺。 【高中數學(xué)說(shuō)課稿】相關(guān)文章: 高中數學(xué)的說(shuō)課稿04-19 高中數學(xué)優(yōu)秀說(shuō)課稿03-08 高中數學(xué)說(shuō)課稿06-13 高中數學(xué)數列說(shuō)課稿06-07 高中數學(xué)數列說(shuō)課稿(優(yōu)秀)07-16 【優(yōu)秀】高中數學(xué)說(shuō)課稿03-01高中數學(xué)說(shuō)課稿 篇4
高中數學(xué)說(shuō)課稿 篇5
高中數學(xué)說(shuō)課稿 篇6