高中數學(xué)說(shuō)課稿【推薦】
在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,借助說(shuō)課稿可以更好地提高教師理論素養和駕馭教材的能力。怎樣寫(xiě)說(shuō)課稿才更能起到其作用呢?下面是小編精心整理的高中數學(xué)說(shuō)課稿,希望對大家有所幫助。

高中數學(xué)說(shuō)課稿1
一、本節內容的地位與重要性
"分類(lèi)計數原理與分步計數原理"是《高中數學(xué)》一節獨特內容。這一節課與排列、組合的基本概念有著(zhù)緊密的聯(lián)系,通過(guò)對這一節課的學(xué)習,既可以讓學(xué)生接受、理解分類(lèi)計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學(xué)做好準備,起到奠基的重要作用。
二、關(guān)于教學(xué)目標的確定
根據兩個(gè)基本原理的地位和作用,我認為本節課的教學(xué)目標是:
。1)使學(xué)生正確理解兩個(gè)基本原理的概念;
。2)使學(xué)生能夠正確運用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題;
。3)提高分析、解決問(wèn)題的能力
。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認識事物的辯證唯物主義哲學(xué)思想觀(guān)點(diǎn)。
三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理
中學(xué)數學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以?xún)蓚(gè)計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習本章的重點(diǎn)內容。
正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類(lèi),學(xué)生不是一下子就能理解深刻的,面對復雜的事物和現象學(xué)生對分類(lèi)和分步的選擇容易產(chǎn)生錯誤的認識,所以分類(lèi)計數原理和分步計數原理的準確應用是本節課的教學(xué)難點(diǎn)。必需使學(xué)生認清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類(lèi)還是分步,才能使學(xué)生接受概念并對如何運用這兩個(gè)基本原理有正確清楚的認識。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準備。
四、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據本節課的內容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。
啟發(fā)引導式作為一種啟發(fā)式教學(xué)方法,體現了認知心理學(xué)的基本理論。符合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結合、教師的主導作用與學(xué)生的主體地位相統一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過(guò)主動(dòng)思考、動(dòng)手操作來(lái)達到對知識的"發(fā)現"和接受,進(jìn)而完成知識的內化,使書(shū)本的知識成為自己的知識。
電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強化對學(xué)生感觀(guān)的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習興趣,加大一堂課的信息容量,使教學(xué)目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來(lái)體現,更好地為教學(xué)服務(wù)。
五、關(guān)于學(xué)法的指導
"授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識,還要培養學(xué)生主動(dòng)觀(guān)察、主動(dòng)思考、自我發(fā)現的學(xué)習能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的目標。教學(xué)中,教師創(chuàng )設疑問(wèn),學(xué)生想辦法解決疑問(wèn),通過(guò)教師的啟發(fā)點(diǎn)撥,類(lèi)比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個(gè)環(huán)節,學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,符合學(xué)生認知水平,培養了學(xué)習能力。
六、關(guān)于教學(xué)程序的設計
。ㄒ唬┱n題導入
這是本章的第一節課,是起始課,講起始課時(shí),把這一學(xué)科的內容作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對將要學(xué)習的知識有一個(gè)初步的了解,并為下面的學(xué)習打下思想基礎。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習本節的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學(xué)習本章內容的重要性。同時(shí)板書(shū)課題(分類(lèi)計數原理與分步計數原理)
這樣做,能使學(xué)生明白本節內容的地位和作用,激發(fā)其學(xué)習新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準備。
。ǘ┬抡n講授
通過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車(chē)與坐汽車(chē)兩類(lèi)方法均可,每類(lèi)中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。
緊跟著(zhù)給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?
引伸2:若完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,每一類(lèi)中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?
這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類(lèi)計數原理做好了準備。
板書(shū)分類(lèi)計數原理內容:
完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱(chēng)加法原理)
此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認識,引導學(xué)生分析分類(lèi)計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)
。1)各分類(lèi)之間相互獨立,都能完成這件事;
。2)根據問(wèn)題的特點(diǎn)在確定的分類(lèi)標準下進(jìn)行分類(lèi);
。3)完成這件事的任何一種方法必屬于某一類(lèi),并且分別屬于不同兩類(lèi)的兩種方法都是不同的方法。
這樣做加深學(xué)生對分類(lèi)計數原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。
接下來(lái)給出問(wèn)題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?
提出問(wèn)題:?jiǎn)?wèn)題1與問(wèn)題2同是研究從甲地到乙地的不同走法,請找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì )發(fā)現問(wèn)題1中采用乘火車(chē)或乘汽車(chē)都可以從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車(chē)后乘汽車(chē)兩個(gè)步驟才能完成從甲地到乙地這件事。
問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學(xué)生列式求出不同走法數,并列舉所有走法。
歸納得出:分步計數原理(板書(shū)原理內容)
分步計數原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不同的方法。
同樣趁學(xué)生對定理有一定的認識,引導學(xué)生分析分步計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)
。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;
。2) 根據問(wèn)題的特點(diǎn)在確定的分步標準下分步;
。3) 分步時(shí)要注意滿(mǎn)足完成一件事必須并且只需連續完成這N個(gè)步驟這件事才算完成。
。ㄈ⿷门e例
教材例1:(書(shū)架取書(shū)問(wèn)題)引導學(xué)生分析解答,注意區分是分類(lèi)還是分步。
例2:由數字0,1,2,3,4可以組成多少個(gè)三位整數(各位上的數字允許重復)?本題設置了4個(gè)問(wèn)題:
。1) 每一個(gè)三位數是由什么構成的?(三個(gè)整數字)
。2) 023是一個(gè)三位數嗎?(百位上不能是0)
。3) 組成一個(gè)三位數需要怎么做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個(gè)位上的數字)
。4) 怎樣表述?
教師巡視指導、并歸納
解:要組成一個(gè)三位數,需要分成三個(gè)步驟:第一步確定百位上的數字,從1~4這4個(gè)數字中任選一個(gè)數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個(gè)位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個(gè)數是N=4×5×5=100.
答:可以組成100個(gè)三位整數。
。ń處煹倪B續發(fā)問(wèn)、啟發(fā)、引導,幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問(wèn)題能力有所提高。
教師在第二個(gè)例題中給出板書(shū)示范,能幫助學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準確的表達、規范的書(shū)寫(xiě),對于學(xué)生周密思考、準確表達、規范書(shū)寫(xiě)良好習慣的形成有著(zhù)積極的促進(jìn)作用,也可以為學(xué)生后面應用兩個(gè)基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時(shí)候用分類(lèi)計數原理、什么時(shí)候用分步計數原理呢?
生:分類(lèi)時(shí)用分類(lèi)計數原理,分步時(shí)用分步計數原理。
師:應用兩個(gè)基本原理時(shí)需要注意什么呢?
生:分類(lèi)時(shí)要求各類(lèi)辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨立的。
。ㄎ澹┱n堂練習
P222:練習1~4.學(xué)生板演第4題
。▽τ陬}4,教師有必要對三個(gè)多項式乘積展開(kāi)后各項的構成給以提示)
。┎贾米鳂I(yè)
P222:練習5,6,7.
補充題:
1.在所有的兩位數中,個(gè)位數字小于十位數字的共有多少個(gè)?
。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類(lèi),共有9+8+7+…+2+1=45個(gè)個(gè)位數字小于十位數字的兩位數)
2.某學(xué)生填報高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不同的志愿,求該生填寫(xiě)志愿的方式的種數。
。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式)
3.在所有的三位數中,有且只有兩個(gè)數字相同的三位數共有多少個(gè)?
。ㄌ崾荆嚎梢杂孟旅娣椒▉(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類(lèi)中每類(lèi)都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數字相同的三位數)
4.某小組有10人,每人至少會(huì )英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì )英語(yǔ),5人會(huì )日語(yǔ),(1)從中任選一個(gè)會(huì )外語(yǔ)的人,有多少種選法?(2)從中選出會(huì )英語(yǔ)與會(huì )日語(yǔ)的各1人,有多少種不同的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會(huì )英語(yǔ)又會(huì )日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學(xué)習,認真復習,就有可能在高中的戰場(chǎng)上考取自己理想的成績(jì)。
高中數學(xué)說(shuō)課稿2
一、教材分析:
1、教材的地位與作用。
本節資料是在學(xué)生學(xué)習了"事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。
在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下頭學(xué)習求比較復雜的情景的概率打下基礎。
2、重點(diǎn)與難點(diǎn)。
重點(diǎn):對概率意義的理解,經(jīng)過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。
情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。
三、教法、學(xué)法分析:
引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現"教"為"學(xué)"服務(wù)這一宗旨。
四、教學(xué)過(guò)程分析:
1、引導學(xué)生探究
精心設計問(wèn)題一,學(xué)生經(jīng)過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的"確定事件和不確定事件"的知識,為學(xué)好本節資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大。。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。
2、歸納概括
學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。
引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。
3、舉例應用
、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。
、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發(fā)展
、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。
、谱寣W(xué)生設計活動(dòng)資料,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新本事。
高中數學(xué)說(shuō)課稿3
一、教材結構與內容簡(jiǎn)析
1本節內容在全書(shū)及章節的地位:
《向量》出現在高中數學(xué)第一冊(下)第五章第1節。本節內容是傳統意義上《平面解析幾何》的基礎部分,因此,在《數學(xué)》這門(mén)學(xué)科中,占據極其重要的地位。
2數學(xué)思想方法分析:
。1)從“向量可以用有向線(xiàn)段來(lái)表示”所反映出的“數”與“形”之間的轉化,就可以看到《數學(xué)》本身的“量化”與“物化”。
。2)從建構手段角度分析,在教材所提供的材料中,可以看到“數形結合”思想。
二、教學(xué)目標
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
1基礎知識目標:掌握“向量”的概念及其表示方法,能利用它們解決相關(guān)的問(wèn)題。
2能力訓練目標:逐步培養學(xué)生觀(guān)察、分析、綜合和類(lèi)比能力,會(huì )準確地闡述自己的思路和觀(guān)點(diǎn),著(zhù)重培養學(xué)生的認知和元認知能力。
3創(chuàng )新素質(zhì)目標:引導學(xué)生從日常生活中挖掘數學(xué)內容,培養學(xué)生的發(fā)現意識和整合能力;《向量》的教學(xué)旨在培養學(xué)生的“知識重組”意識和“數形結合”能力。
4個(gè)性品質(zhì)目標:培養學(xué)生勇于探索,善于發(fā)現,獨立意識以及不斷超越自我的創(chuàng )新品質(zhì)。
三、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
重點(diǎn):向量概念的引入。
難點(diǎn):“數”與“形”完美結合。
關(guān)鍵:本節課通過(guò)“數形結合”,著(zhù)重培養和發(fā)展學(xué)生的認知和變通能力。
四、教材處理
建構主義學(xué)習理論認為,建構就是認知結構的組建,其過(guò)程一般是先把知識點(diǎn)按照邏輯線(xiàn)索和內在聯(lián)系,串成知識線(xiàn),再由若干條知識線(xiàn)形成知識面,最后由知識面按照其內容、性質(zhì)、作用、因果等關(guān)系組成綜合的知識體。本課時(shí)為何提出“數形結合”呢,應該說(shuō),這一處理方法正是基于此理論的體現。其次,本節課處理過(guò)程力求達到解決如下問(wèn)題:知識是如何產(chǎn)生的?如何發(fā)展?又如何從實(shí)際問(wèn)題抽象成為數學(xué)問(wèn)題,并賦予抽象的數學(xué)符號和表達式,如何反映生活中客觀(guān)事物之間簡(jiǎn)單的和諧關(guān)系。
五、教學(xué)模式
教學(xué)過(guò)程是教師活動(dòng)和學(xué)生活動(dòng)的十分復雜的動(dòng)態(tài)性總體,是教師和全體學(xué)生積極參與下,進(jìn)行集體認識的過(guò)程。教為主導,學(xué)為主體,又互為客體。啟動(dòng)學(xué)生自主性學(xué)習,啟發(fā)引導學(xué)生實(shí)踐數學(xué)思維的過(guò)程,自得知識,自覓規律,自悟原理,主動(dòng)發(fā)展思維和能力。
六、學(xué)習方法
1、讓學(xué)生在認知過(guò)程中,著(zhù)重掌握元認知過(guò)程。
2、使學(xué)生把獨立思考與多向交流相結合。
七、教學(xué)程序及設想
。ㄒ唬┰O置問(wèn)題,創(chuàng )設情景。
1、提出問(wèn)題:在日常生活中,我們不僅會(huì )遇到大小不等的量,還經(jīng)常會(huì )接觸到一些帶有方向的量,這些量應該如何表示呢?
2、(在學(xué)生討論基礎上,教師引導)通過(guò)“力的圖示”的回憶,分析大小、方向、作用點(diǎn)三者之間的關(guān)系,著(zhù)重考慮力的作用點(diǎn)對運動(dòng)的相對性與絕對性的影響。
設計意圖:
1、把教材內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過(guò)程。
2、我們知道,學(xué)習總是與一定知識背景即情境相聯(lián)系的。在實(shí)際情境下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識。這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情境中。
。ǘ┨峁⿲(shí)際背景材料,形成假說(shuō)。
1、小船以0。5m/s的速度航行,已知一條河長(cháng)xxxxm,寬150m,問(wèn)小船需經(jīng)過(guò)多長(cháng)時(shí)間,到達對岸?
2、到達對岸?這句話(huà)的實(shí)質(zhì)意義是什么?(學(xué)生討論,期望回答:指代不明。)
3、由此實(shí)際問(wèn)題如何抽象為數學(xué)問(wèn)題呢?(學(xué)生交流討論,期望回答:要確定某些量,有時(shí)除了知道其大小外,還需要了解其方向。)
設計意圖:
1、在稍稍超前于學(xué)生智力發(fā)展的邊界上(即思維的最鄰近發(fā)展)通過(guò)問(wèn)題引領(lǐng),來(lái)促成學(xué)生“數形結合”思想的形成。
2、通過(guò)學(xué)生交流討論,把實(shí)際問(wèn)題抽象成為數學(xué)問(wèn)題,并賦予抽象的數學(xué)符號和表達方式。
。ㄈ┮龑剿,尋找解決方案。
1、如何補充上面的題目呢?從已學(xué)過(guò)知識可知,必須增加“方位”要求。
2。方位的實(shí)質(zhì)是什么呢?即位移的本質(zhì)是什么?期望回答:大小與方向的統一。
3、零向量、單位向量、平行向量、相等向量、共線(xiàn)向量等系列化概念之間的關(guān)系是什么?(明確要領(lǐng)。)
設計意圖:
學(xué)生在教師引導下,在積累了已有探索經(jīng)驗的基礎上,進(jìn)行討論交流,相互評價(jià),共同完成了“數形結合”思想上的建構。
2、這一問(wèn)題設計,試圖讓學(xué)生不“唯書(shū)”,敢于和善于質(zhì)疑批判和超越書(shū)本和教師,這是創(chuàng )新素質(zhì)的突出表現,讓學(xué)生不滿(mǎn)足于現狀,執著(zhù)地追求。
3、盡可能地揭示出認知思想方法的全貌,使學(xué)生從整體上把握解決問(wèn)題的方法。
。ㄋ模┛偨Y結論,強化認識。
經(jīng)過(guò)引導,學(xué)生歸納出“數形結合”的思想——“數”與“形”是一個(gè)問(wèn)題的兩個(gè)方面,“形”的外表里,蘊含著(zhù)“數”的本質(zhì)。
設計意圖:促進(jìn)學(xué)生數學(xué)思想方法的形成,引導學(xué)生確實(shí)掌握“數形結合”的思想方法。
。ㄎ澹┳兪窖由,進(jìn)行重構。
教師引導:在此我們已經(jīng)知道,欲解決一些抽象的數學(xué)問(wèn)題,可以借助于圖形來(lái)解決,這就是向量的理論基礎。
下面繼續研究,與向量有關(guān)的一些概念,引導學(xué)生利用模型演示進(jìn)行觀(guān)察。
概念1:長(cháng)度為0的向量叫做零向量。
概念2:長(cháng)度等于一個(gè)單位長(cháng)度的向量,叫做單位向量。
概念3:方向相同或相反的非零向量叫做平行(或共線(xiàn))向量。(規定:零向量與任一向量平行。)
概念4:長(cháng)度相等且方向相同的向量叫做相等向量。
設計意圖:
1、學(xué)生在教師引導下,在積累了已有探索經(jīng)驗的基礎上進(jìn)行討論交流,相互評價(jià),共同完成了有向線(xiàn)段與向量?jì)烧哧P(guān)系的建構。
2、這些概念的比較可以讓學(xué)生加強對“向量”概念的理解,以便更好地“數形結合”。
3、讓學(xué)生對教學(xué)思想方法,及其應情境達到較為純熟的認識,并將這種認識思維地貯存在大腦中,隨時(shí)提取和應用。
。┛偨Y回授調整。
1、知識性?xún)热荩?/p>
例設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量OA、OB、OC相等的向量。
2、對運用數學(xué)思想方法創(chuàng )新素質(zhì)培養的小結:
a、要善于在實(shí)際生活中,發(fā)現問(wèn)題,從而提煉出相應的數學(xué)問(wèn)題。發(fā)現作為一種意識,可以解釋為“探察問(wèn)題的意識”;發(fā)現作為一種能力,可以解釋為“找到新東西”的能力,這是培養創(chuàng )造力的基本途徑。
b、問(wèn)題的解決,采用了“數形結合”的數學(xué)思想,體現了數學(xué)思想方法是解決問(wèn)題的根本途徑。
c、問(wèn)題的變式探究的過(guò)程,是一個(gè)創(chuàng )新思維活動(dòng)過(guò)程中一種多維整合過(guò)程。重組知識的過(guò)程,是一種多維整合的過(guò)程,是一個(gè)高層次的知識綜合過(guò)程,是對教材知識在更高水平上的概括和總結,有利于形成一個(gè)自我再生力強的開(kāi)放的動(dòng)態(tài)的知識系統,從而使得思維具有整體功能和創(chuàng )新能力。
2、設計意圖:
1、知識性?xún)热莸目偨Y,可以把課堂教學(xué)傳授的知識,盡快轉化為學(xué)生的素質(zhì)。
2、運用數學(xué)方法創(chuàng )新素質(zhì)的小結,能讓學(xué)生更系統,更深刻地理解數學(xué)思想方法在解題中的地位和作用,并且逐漸培養學(xué)生的良好個(gè)性品質(zhì)。這是每堂課必不可少的一個(gè)重要環(huán)節。
。ㄆ撸┎贾米鳂I(yè)。
反饋“數形結合”的探究過(guò)程,整理知識體系,并完成習題5。1的內容。
高中數學(xué)說(shuō)課稿4
1.教材分析
1-1教學(xué)內容及包含的知識點(diǎn)
(1)本課內容是高中數學(xué)第二冊第七章第三節《兩條直線(xiàn)的位置關(guān)系》的最后一個(gè)內容
(2)包含知識點(diǎn):點(diǎn)到直線(xiàn)的距離公式和兩平行線(xiàn)的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節課是兩條直線(xiàn)位置關(guān)系的最后一個(gè)內容,在此之前,有對兩線(xiàn)位置關(guān)系的定性刻畫(huà):平行、垂直,以及對相交兩線(xiàn)的定量刻畫(huà):夾角、交點(diǎn)。在此之后,有圓錐曲線(xiàn)方程,因而本節既是對前面兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)的復習,又是為后面計算點(diǎn)線(xiàn)距離(在直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形中)提供一套工具。
可見(jiàn),本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線(xiàn)的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線(xiàn)的距離公式。在近年的高考中,通常以直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形為背景,判斷直線(xiàn)和圓錐曲線(xiàn)的位置或構成三角形求高,涉及絕對值,直線(xiàn)垂直,最小值等。
1-5教學(xué)目標及確定依據
教學(xué)目標
(1)掌握點(diǎn)到直線(xiàn)的距離的概念、公式及公式的推導過(guò)程,能用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
(2)培養學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認識事物之間相互聯(lián)系、互相轉化的辯證法思想,培養學(xué)生轉化知識的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學(xué)數學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
。1)重點(diǎn):點(diǎn)到直線(xiàn)的距離公式
確定依據:由本節在教材中的地位確定
。2)難點(diǎn):點(diǎn)到直線(xiàn)的距離公式的推導
確定依據:根據定義進(jìn)行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點(diǎn)
。3)關(guān)鍵:實(shí)現兩個(gè)轉化。一是將點(diǎn)線(xiàn)距離轉化為定點(diǎn)到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現法:本節課為了培養學(xué)生探究性思維目標,在教學(xué)過(guò)程中,使老師的主導性和學(xué)生的主體性有機結合,使學(xué)生能夠愉快地自覺(jué)學(xué)習,通過(guò)學(xué)生自己練習“嘗試性題組”,引導、啟發(fā)學(xué)生分析、發(fā)現、比較、論證等,從而形成完整的數學(xué)模型。
確定依據:
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習原則,最佳動(dòng)機原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3.學(xué)法
3-1發(fā)現法:豐富學(xué)生的數學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習、觀(guān)察、分析、探索等步驟,自己發(fā)現解決問(wèn)題的方法,比較論證后得到一般性結論,形成完整的數學(xué)模型,再運用所得理論和方法去解決問(wèn)題。
一句話(huà):還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
。1)知識能力狀況,本節為兩線(xiàn)位置關(guān)系的最后一個(gè)內容,在這之前學(xué)生已經(jīng)系統的學(xué)習了直線(xiàn)方程的各種形式,有對兩線(xiàn)位置關(guān)系的定性認識和對兩線(xiàn)相交的定量認識,為本節推證公式涉及到直線(xiàn)方程、兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)作好了知識儲備。同時(shí)學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標系溝通直線(xiàn)與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
。2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線(xiàn)的距離”(初中已學(xué)習定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢(xún)動(dòng)機由此而生。
。3)生活經(jīng)驗:數學(xué)源于生活,生活中的點(diǎn)線(xiàn)距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數學(xué)化,是每個(gè)追求成長(cháng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數學(xué)活動(dòng)能夠讓他們真正參與,體驗過(guò)程,錘煉意志,培養能力。
3-3學(xué)具:直尺、三角板
3. 教學(xué)程序
時(shí),此時(shí)又怎樣求點(diǎn)A到直線(xiàn)
的距離呢?
生: 定性回答
點(diǎn)明課題,使學(xué)生明確學(xué)習目標。
創(chuàng )設“不憤不啟,不悱不發(fā)”的學(xué)習情景。
練習
比較
發(fā)現
歸納
討論
的距離為d
(1) A(2,4),
。簒 = 3, d=_____
(2) A(2,4),
。簓 = 3,d=_____
(3) A(2,4),
。簒 – y = 0,d=_____
嘗試性題組告訴學(xué)生下手不難,還負責特例檢驗,從而增強學(xué)生參與的信心。
請三個(gè)同學(xué)上黑板板演
師: 請這三位同學(xué)分別說(shuō)說(shuō)自己的解題思路。
生: 回答
教學(xué)機智:應沉淀為三種思路:一,根據定義轉化為定點(diǎn)到垂足的距離;二,利用等積法轉化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。
視回答的情況,老師進(jìn)行肯定、修正或補充提問(wèn):“還有其他不同的思路嗎”。
說(shuō)解題思路,一是讓學(xué)生清晰有條理的表達自己的思考過(guò)程,二是其求解過(guò)程提示了證明的途徑(根據定義或畫(huà)坐標線(xiàn)時(shí)正好交出一個(gè)直角三角形)
師:很好,剛才我們解決了定點(diǎn)到特殊直線(xiàn)的距離問(wèn)題,那么,點(diǎn)P(x0,y0)到一般直線(xiàn)
。篈x+By+C=0(A,B≠0)的距離又怎樣求?
教學(xué)機智:如學(xué)生反應不大,則補充提問(wèn):上面三個(gè)題的解題思路對這個(gè)問(wèn)題有啟示嗎?
生:方案一:根據定義
方案二:根據等積法
方案三: ......
設置此問(wèn),一是使學(xué)生的認知由特殊向一般轉化,發(fā)現可能的方法,二是讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索和創(chuàng )造,感受數學(xué)的生機和樂(lè )趣。
師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。
“師生共作”體現新型師生觀(guān),且//時(shí),又怎樣求這兩線(xiàn)的距離?
生:計算得線(xiàn)線(xiàn)距離公式
師:板書(shū)點(diǎn)到直線(xiàn)的距離公式,兩平行線(xiàn)間距離公式
“沒(méi)有新知識,新知識均是舊知識的組合”,創(chuàng )設此問(wèn)可發(fā)揮學(xué)生的創(chuàng )造性,增加學(xué)生的成就感。
反思小結
經(jīng)驗共享
。 分 鐘)
師: 通過(guò)以上的學(xué)習,你有哪些收獲?(知識,能力,情感)。有哪些疑問(wèn)?誰(shuí)能答這些疑問(wèn)?
生: 討論,回答。
對本節課用到的技能,數學(xué)思維方法等進(jìn)行小結,使學(xué)生對本節知識有一個(gè)整體的認識。
共同進(jìn)步,各取所長(cháng)。
練習
。ㄎ 分 鐘)
P53 練習 1, 2,3
熟練的用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
再度延伸
。ㄒ 分 鐘)
探索其他推導方法
“帶著(zhù)問(wèn)題進(jìn)課堂,帶著(zhù)更多的問(wèn)題出課堂”,讓學(xué)生真正學(xué)會(huì )學(xué)習。
4. 教學(xué)評價(jià)
學(xué)生完成反思性學(xué)習報告,書(shū)寫(xiě)要求:
(1) 整理知識結構
(2) 總結所學(xué)到的基本知識,技能和數學(xué)思想方法
(3) 總結在學(xué)習過(guò)程中的經(jīng)驗,發(fā)明發(fā)現,學(xué)習障礙等,說(shuō)明產(chǎn)生障礙的原因
(4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
作用:
(1) 通過(guò)反思使學(xué)生對所學(xué)知識系統化。反思的過(guò)程實(shí)際上是學(xué)生思維內化,知識深化和認知牢固化的一個(gè)心理活動(dòng)過(guò)程。
(2) 報告的寫(xiě)作本身就是一種創(chuàng )造性活動(dòng)。
(3) 及時(shí)了解學(xué)生學(xué)習過(guò)程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿(mǎn)意度和效果,以便作出及時(shí)調整,及時(shí)進(jìn)行補償性教學(xué)。
5. 板書(shū)設計
(略)
6. 教學(xué)的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
高中數學(xué)說(shuō)課稿5
一、說(shuō)教材:
1. 地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書(shū)的重點(diǎn)內容之一,也是歷年高考、會(huì )考的必考內容,是在學(xué)完求曲線(xiàn)方程的基礎上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線(xiàn)的全面研究,為今后的學(xué)習打好基礎,因此本節內容具有承前啟后的作用。
2. 教學(xué)目標:
根據《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據教材的具體內容和學(xué)生的實(shí)際情況,確定本節課的教學(xué)目標:
。1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。
。2)能力目標:
。╝)培養學(xué)生靈活應用知識的能力。
。╞) 培養學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。
。╟)培養學(xué)生快速準確的運算能力。
。3)德育目標:培養學(xué)生數形結合思想,類(lèi)比、分類(lèi)討論的思想以及確立從感性到理性認識的辯證唯物主義觀(guān)點(diǎn)。
3. 重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):
因為橢圓的定義和標準方程是解決與橢圓有關(guān)問(wèn)題的重要依據,也是研究雙曲線(xiàn)和拋物線(xiàn)的基礎,因此,它是本節教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導橢圓的標準方程時(shí)涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點(diǎn);坐標系建立的好壞直接影響標準方程的推導和化簡(jiǎn),因此建立一個(gè)適當的直角坐標系是本節的關(guān)鍵。
二、 說(shuō)教材處理
為了完成本節課的教學(xué)目標,突出重點(diǎn)、分散難點(diǎn)、根據教材的內容和學(xué)生的實(shí)際情況,對教材做以下的處理:
1.學(xué)生狀況分析及對策:
2.教材內容的組織和安排:
本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:
。1)復習提問(wèn)(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業(yè)
三、 說(shuō)教法和學(xué)法
1.為了充分調動(dòng)學(xué)生學(xué)習的積極性,是學(xué)生變被動(dòng)學(xué)習為主動(dòng)而愉快的學(xué)習,引導學(xué)生自己動(dòng)手,讓學(xué)生的思維活動(dòng)在教師的引導下層層展開(kāi)。請學(xué)生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學(xué)法”。
2.利用電腦所畫(huà)圖形的動(dòng)態(tài)演示總結規律。同時(shí)利用電腦的動(dòng)態(tài)演示激發(fā)學(xué)生的學(xué)習興趣。
四、 教學(xué)過(guò)程
教學(xué)環(huán)節
3.設a(-2,0),b(2,0),三角形abp周長(cháng)為10,動(dòng)點(diǎn)p軌跡方程。
例1屬基礎,主要反饋學(xué)生掌握基本知識的程度。
例2可強化基本技能訓練和基本知識的靈活運用。
小結
為使學(xué)生對本節內容有一個(gè)完整深刻的認識,教師引導學(xué)生從以下幾個(gè)方面進(jìn)行小結。
1.橢圓的定義和標準方程及其應用。
2.橢圓標準方程中a,b,c諸關(guān)系。
3.求橢圓方程常用方法和基本思路。
通過(guò)小結形成知識體系,加深對本節知識的理解培養學(xué)生的歸納總結能力,增強學(xué)生學(xué)好圓錐曲線(xiàn)的信心。
布置作業(yè)
。1) 77頁(yè)——78頁(yè) 1,2,3,79頁(yè) 11
。2) 預習下節內容
鞏固本節所學(xué)概念,強化基本技能訓練,培養學(xué)生良好的學(xué)習習慣和品質(zhì),發(fā)現和彌補教學(xué)中的遺漏和不足。
高中數學(xué)說(shuō)課稿6
一、說(shuō)教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。
2、 教學(xué)目標
。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;
b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。
。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;
b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。
。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;
b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。
3、重點(diǎn)和難點(diǎn)
重點(diǎn):集合的概念,元素與集合的關(guān)系。
難點(diǎn):準確理解集合的概念。
二、學(xué)情分析(說(shuō)學(xué)情)
對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。
三、說(shuō)教法
針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。
四、學(xué)習指導(說(shuō)學(xué)法)
教學(xué)的矛盾主要方面是學(xué)生的`學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。
五、教學(xué)過(guò)程
1、引入新課:
a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。
b、介紹集合論的創(chuàng )始者康托爾
2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。
教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節重點(diǎn)做好鋪墊。
6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。
9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。
10、知識的實(shí)際應用:
問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。
11、課堂小節
以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。
六、評價(jià)
教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程遵重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。
七、教學(xué)反思
1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。
2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。
八、板書(shū)設計
高中數學(xué)說(shuō)課稿7
尊敬的各位專(zhuān)家、評委:
下午好!
我的抽簽序號是____,今天我說(shuō)課的課題是《_______》第__課時(shí)。 我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。
一、教材分析
。ㄒ唬┑匚慌c作用
數列是高中數學(xué)重要內容之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學(xué)習數列也為進(jìn)一步學(xué)習數列的極限等內容做好準備。而等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。
。ǘ⿲W(xué)情分析
。1)學(xué)生已熟練掌握_________________。
。2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
。3)學(xué)生思維活潑,積極性高,已初步形成對數學(xué)問(wèn)題的合作探究能力。
。4) 學(xué)生層次參次不齊,個(gè)體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體,應該以獲得知識與技能的過(guò)程,同時(shí)成為學(xué)會(huì )學(xué)習和正確價(jià)值觀(guān)。這要求我們在教學(xué)中以知識技能的培養為主線(xiàn),透情感態(tài)度與價(jià)值觀(guān),并把這兩者充分體現在教學(xué)過(guò)程中,新課標指出教學(xué)的主體是學(xué)生,因此目標的制定和設計必須從學(xué)生的角度出發(fā),根據____在教材內容中的地位與作用,結合學(xué)情分析,本節課教學(xué)應實(shí)現如下教學(xué)目標:
。ㄒ唬┙虒W(xué)目標
。1)知識與技能
使學(xué)生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
。2)過(guò)程與方法
引導學(xué)生通過(guò)觀(guān)察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
。3)情感態(tài)度與價(jià)值觀(guān)
在函數單調性的學(xué)習過(guò)程中,使學(xué)生體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養學(xué)生善于觀(guān)察、勇于探索的良好習慣和嚴謹的科學(xué)態(tài)度。
。ǘ┲攸c(diǎn)難點(diǎn)
本節課的教學(xué)重點(diǎn)是________________________,教學(xué)難點(diǎn)是_____________________。
三、教法、學(xué)法分析
。ㄒ唬┙谭
基于本節課的內容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來(lái)完成教學(xué),為了實(shí)現本節課的教學(xué)目標,在教法上我采取了:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)學(xué)生求知欲,調動(dòng)學(xué)生主體參與的積極性.
2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念.
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并順利地完成書(shū)面表達.
。ǘ⿲W(xué)法
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
四、教學(xué)過(guò)程分析
。ㄒ唬┙虒W(xué)過(guò)程設計
教學(xué)是一個(gè)教師的“導”,學(xué)生的“學(xué)”以及教學(xué)過(guò)程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價(jià)等為學(xué)生的學(xué)習搭建支架,把學(xué)習的任務(wù)轉移給學(xué)生,學(xué)生就是接受任務(wù),探究問(wèn)題、完成任務(wù)。如果在教學(xué)過(guò)程中把“教與學(xué)”完美的結合也就是以“問(wèn)題”為核心,通過(guò)對知識的發(fā)生、發(fā)展和運用過(guò)程的演繹、解釋和探究來(lái)組織和推動(dòng)教學(xué)。
。1)創(chuàng )設情境,提出問(wèn)題。
新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。
。2)引導探究,建構概念。
數學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習活動(dòng)中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數學(xué)化”、“再創(chuàng )造”的活動(dòng)過(guò)程.
。3)自我嘗試,初步應用。
有效的數學(xué)學(xué)習過(guò)程,不能單純的模仿與記憶,數學(xué)思想的領(lǐng)悟和學(xué)習過(guò)程更是如此。讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗,師生互動(dòng)學(xué)習,生生合作交流,共同探究.
。4)當堂訓練,鞏固深化。
通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。
。5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:(1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?(2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?(3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?
。ǘ┳鳂I(yè)設計
作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本
節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成.
我設計了以下作業(yè):
。1)必做題
。2)選做題
。ㄈ┌鍟(shū)設計
板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評價(jià)分析
學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對____是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝!
高中數學(xué)說(shuō)課稿8
教材地位及作用
本節課是高中數學(xué)3(必修)第三章概率的第二節古典概型的第一課時(shí),是在隨機事件的概率之后,幾何概型之前,尚未學(xué)習排列組合的情況下教學(xué)的。古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。
學(xué)好古典概型可以為其它概率的學(xué)習奠定基礎,同時(shí)有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問(wèn)題。
教學(xué)重點(diǎn)
理解古典概型的概念及利用古典概型求解隨機事件的概率。
根據本節課的地位和作用以及新課程標準的具體要求,制訂教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)
如何判斷一個(gè)試驗是否是古典概型,分清在一個(gè)古典概型中某隨機事件包含的基本事件的個(gè)數和試驗中基本事件的總數。
根據本節課的內容,即尚未學(xué)習排列組合,以及學(xué)生的心理特點(diǎn)和認知水平,制定了教學(xué)難點(diǎn)。
教學(xué)目標
1.知識與技能
。1)理解古典概型及其概率計算公式,
。2)會(huì )用列舉法計算一些隨機事件所含的基本事件數及事件發(fā)生的概率。
2.過(guò)程與方法
根據本節課的內容和學(xué)生的實(shí)際水平,通過(guò)模擬試驗讓學(xué)生理解古典概型的特征:試驗結果的有限性和每一個(gè)試驗結果出現的等可能性,觀(guān)察類(lèi)比各個(gè)試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學(xué)會(huì )運用數形結合、分類(lèi)討論的思想解決概率的計算問(wèn)題。
3.情感態(tài)度與價(jià)值觀(guān)
概率教學(xué)的核心問(wèn)題是讓學(xué)生了解隨機現象與概率的意義,加強與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評價(jià)身邊的一些隨機現象。適當地增加學(xué)生合作學(xué)習交流的機會(huì ),盡量地讓學(xué)生自己舉出生活和學(xué)習中與古典概型有關(guān)的實(shí)例。使得學(xué)生在體會(huì )概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神。
根據新課程標準,并結合學(xué)生心理發(fā)展的需求,以及人格、情感、價(jià)值觀(guān)的具體要求制訂而成。這對激發(fā)學(xué)生學(xué)好數學(xué)概念,養成數學(xué)習慣,感受數學(xué)思想,提高數學(xué)能力起到了積極的作用。
教學(xué)過(guò)程分析
一,提出問(wèn)題引入新課
在課前,教師布置任務(wù),以數學(xué)小組為單位,完成下面兩個(gè)模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由科代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由科代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受。
教師最后匯總方法、結果和感受,并提出問(wèn)題?
1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。
2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?
學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出問(wèn)題。
通過(guò)課前的模擬實(shí)驗的展示,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。
二,思考交流形成概念
在試驗一中隨機事件只有兩個(gè),即"正面朝上"和"反面朝上",并且他們都是互斥的,由于硬幣質(zhì)地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是;
在試驗二中隨機事件有六個(gè),即"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)",并且他們都是互斥的,由于骰子質(zhì)地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是。
我們把上述試驗中的隨機事件稱(chēng)為基本事件,它是試驗的每一個(gè)可能結果。
基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和。
特點(diǎn)(2)的理解:在試驗一中,必然事件由基本事件"正面朝上"和"反面朝上"組成;在試驗二中,隨機事件"出現偶數點(diǎn)"可以由基本事件"2點(diǎn)"、"4點(diǎn)"和"6點(diǎn)"共同組成。
學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深新概念的理解。
讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。
三,思考交流形成概念
例1從字母中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?
分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來(lái)。利用樹(shù)狀圖可以將它們之間的關(guān)系列出來(lái)。
我們一般用列舉法列出所有基本事件的結果,畫(huà)樹(shù)狀圖是列舉法的基本方法,一般分布完成的結果(兩步以上)可以用樹(shù)狀圖進(jìn)行列舉。
。(shù)狀圖)
解:所求的基本事件共有6個(gè):
,,,
,,
觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):
試驗一中所有可能出現的基本事件有"正面朝上"和"反面朝上"2個(gè),并且每個(gè)基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"6個(gè),并且每個(gè)基本事件出現的可能性相等,都是;
例1中所有可能出現的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6個(gè),并且每個(gè)基本事件出現的可能性相等,都是;
經(jīng)概括總結后得到:
1,試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
2,每個(gè)基本事件出現的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
思考交流:
。1)向一個(gè)圓面內隨機地投射一個(gè)點(diǎn),如果該點(diǎn)落在圓內任意一點(diǎn)都是等可能的,你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點(diǎn),試驗的所有可能結果數是無(wú)限的,雖然每一個(gè)試驗結果出現的"可能性相同",但這個(gè)試驗不滿(mǎn)足古典概型的第一個(gè)條件。
。2)如圖,某同學(xué)隨機地向一靶心進(jìn)行射擊,這一試驗的結果只有有限個(gè):命中10環(huán)、命中9環(huán)。。。。。。命中5環(huán)和不中環(huán)。你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果只有7個(gè),而命中10環(huán)、命中9環(huán)。。。。。。命中5環(huán)和不中環(huán)的出現不是等可能的,即不滿(mǎn)足古典概型的第二個(gè)條件。
先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。學(xué)生互相交流,回答補充,教師歸納。將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)。培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)用表格列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。從而突出了古典概型這一重點(diǎn)。
兩個(gè)問(wèn)題的設計是為了讓學(xué)生更加準確的把握古典概型的兩個(gè)特點(diǎn)。突破了如何判斷一個(gè)試驗是否是古典概型這一教學(xué)難點(diǎn)。
四,觀(guān)察分析推導方程
問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
分析:
實(shí)驗一中,出現正面朝上的概率與反面朝上的概率相等,即
P("正面朝上")=P("反面朝上")
由概率的加法公式,得
P("正面朝上")+P("反面朝上")=P(必然事件)=1
因此P("正面朝上")=P("反面朝上")=
即試驗二中,出現各個(gè)點(diǎn)的概率相等,即
P("1點(diǎn)")=P("2點(diǎn)")=P("3點(diǎn)")
。絇("4點(diǎn)")=P("5點(diǎn)")=P("6點(diǎn)")
反復利用概率的加法公式,我們有
P("1點(diǎn)")+P("2點(diǎn)")+P("3點(diǎn)")+P("4點(diǎn)")+P("5點(diǎn)")+P("6點(diǎn)")=P(必然事件)=1
所以P("1點(diǎn)")=P("2點(diǎn)")=P("3點(diǎn)")
。絇("4點(diǎn)")=P("5點(diǎn)")=P("6點(diǎn)")=
進(jìn)一步地,利用加法公式還可以計算這個(gè)試驗中任何一個(gè)事件的概率,例如,
P("出現偶數點(diǎn)")=P("2點(diǎn)")+P("4點(diǎn)")+P("6點(diǎn)")=++==
即根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:
教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系。
鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。
提問(wèn):
。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?
出現字母"d"的概率為:
提問(wèn):
。2)在使用古典概型的概率公式時(shí),應該注意什么?
歸納:
在使用古典概型的概率公式時(shí),應該注意:
。1)要判斷該概率模型是不是古典概型;
。2)要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。除了畫(huà)樹(shù)狀圖,還有什么方法求基本事件的個(gè)數呢?
教師提問(wèn),學(xué)生回答,加深對古典概型的概率計算公式的理解。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
四,例題分析推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,C,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?
分析:
解決這個(gè)問(wèn)題的關(guān)鍵,即討論這個(gè)問(wèn)題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內容,這都不滿(mǎn)足古典概型的第2個(gè)條件——等可能性,因此,只有在假定考生不會(huì )做,隨機地選擇了一個(gè)答案的情況下,才可以化為古典概型。
解:
這是一個(gè)古典概型,因為試驗的可能結果只有4個(gè):選擇A、選擇B、選擇C、選擇D,即基本事件共有4個(gè),考生隨機地選擇一個(gè)答案是選擇A,B,C,D的可能性是相等的。從而由古典概型的概率計算公式得:
課后思考:
。1)在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個(gè)選項中選出所有正確的答案,同學(xué)們可能有一種感覺(jué),如果不知道正確答案,多選題更難猜對,這是為什么?
。2)假設有20道單選題,如果有一個(gè)考生答對了17道題,他是隨機選擇的可能性大,還是他掌握了一定知識的可能性大?
學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。
讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。
鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點(diǎn)數之和是5的結果有多少種?
。3)向上的點(diǎn)數之和是5的概率是多少?
解:(1)擲一個(gè)骰子的結果有6種,我們把兩個(gè)骰子標上記號1,2以便區分,由于1號骰子的結果都可以與2號骰子的任意一個(gè)結果配對,我們用一個(gè)"有序實(shí)數對"來(lái)表示組成同時(shí)擲兩個(gè)骰子的一個(gè)結果(如表),其中第一個(gè)數表示1號骰子的結果,第二個(gè)數表示2號骰子的結果。(可由列表法得到)
由表中可知同時(shí)擲兩個(gè)骰子的結果共有36種。
。2)在上面的結果中,向上的點(diǎn)數之和為5的結果有4種,分別為:
。1,4),(2,3),(3,2),(4,1)
。3)由于所有36種結果是等可能的,其中向上點(diǎn)數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。
引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。
利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來(lái)計算一些隨機事件所含基本事件的個(gè)數及事件發(fā)生的概率。
培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。
五,探究思考鞏固深
化問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?
如果不標上記號,類(lèi)似于(1,2)和(2,1)的結果將沒(méi)有區別。這時(shí),所有可能的結果將是:
。1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種,和是5的結果有2個(gè),它們是(1,4)(2,3),所求的概率為
這就需要我們考察兩種解法是否滿(mǎn)足古典概型的要求了。
可以通過(guò)展示兩個(gè)不同的骰子所拋擲出來(lái)的點(diǎn),感受第二種方法構造的基本事件不是等可能事件,另外還可以利用Excel展示第二種方法中構造的21個(gè)基本事件不是等可能事件。從而加深印象,鞏固知識。
要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。
通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是——研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。
六,總結概括加深理解
1.我們將具有
。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現的可能性相等。(等可能性)
這樣兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
2.古典概型計算任何事件的概率計算公式
3.求某個(gè)隨機事件A包含的基本事件的個(gè)數和實(shí)驗中基本事件的總數的常用方法是列舉法(畫(huà)樹(shù)狀圖和列表),應做到不重不漏。
學(xué)生小結歸納,不足的地方老師補充說(shuō)明。
使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
七,布置作業(yè)
P123練習1、2題
學(xué)生課后自主完成。
進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。
八,板書(shū)設計教法與學(xué)法分析教法分析
根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。
學(xué)法分析
學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
評價(jià)分析評價(jià)設計
本節課的教學(xué)通過(guò)提出問(wèn)題,引導學(xué)生發(fā)現問(wèn)題,經(jīng)歷思考交流概括歸納后得出古典概型的概念,由兩個(gè)問(wèn)題的提出進(jìn)一步加深對古典概型的兩個(gè)特點(diǎn)的理解;再通過(guò)學(xué)生觀(guān)察類(lèi)比推導出古典概型的概率計算公式。這一過(guò)程能夠培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
在解決概率的計算上,教師鼓勵學(xué)生嘗試列表和畫(huà)出樹(shù)狀圖,讓學(xué)生感受求基本事件個(gè)數的一般方法,從而化解由于沒(méi)有學(xué)習排列組合而學(xué)習概率這一教學(xué)困惑。整個(gè)教學(xué)設計的順利實(shí)施,達到了教師的教學(xué)目標。
高中數學(xué)說(shuō)課稿9
一.教材分析:集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
二.目標分析:
教學(xué)重點(diǎn).難點(diǎn)
重點(diǎn):集合的含義與表示方法.
難點(diǎn):表示法的恰當選擇.
教學(xué)目標
l.知識與技能
(1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合的屬于關(guān)系;
(2)知道常用數集及其專(zhuān)用記號;
(3)了解集合中元素的確定性.互異性.無(wú)序性;
(4)會(huì )用集合語(yǔ)言表示有關(guān)數學(xué)對象;
2.過(guò)程與方法
(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.
(2)讓學(xué)生歸納整理本節所學(xué)知識.
3.情感.態(tài)度與價(jià)值觀(guān)
使學(xué)生感受到學(xué)習集合的必要性,增強學(xué)習的積極性.
三.教法分析
1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習.思考.交流.討論和概括,從而更好地完成本節課的教學(xué)目標.
2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué).
四.過(guò)程分析
(一)創(chuàng )設情景,揭示課題
1.教師首先提出問(wèn)題:(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現在的班級。
(2)問(wèn)題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?
引導學(xué)生互相交流.與此同時(shí),教師對學(xué)生的活動(dòng)給予評價(jià).
2.活動(dòng):(1)列舉生活中的集合的例子;
(2)分析、概括各實(shí)例的共同特征
由此引出這節要學(xué)的內容。
設計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為新知作好鋪墊
。ǘ┭刑叫轮,建構概念
1.教師利用多媒體設備向學(xué)生投影出下面7個(gè)實(shí)例:
(1)1-20以?xún)鹊乃匈|(zhì)數;
(2)我國古代的四大發(fā)明;
(3)所有的安理會(huì )常任理事國;
(4)所有的正方形;
(5)海南省在xxxx年9月之前建成的所有立交橋;
(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
(7)國興中學(xué)xxxx年9月入學(xué)的高一學(xué)生的全體.
2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.
一般地,指定的某些對象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集).集合中的每個(gè)對象叫作這個(gè)集合的元素.
4.教師指出:集合常用大寫(xiě)字母A,B,c,D,...表示,元素常用小寫(xiě)字母...表示.
設計意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導學(xué)生閱讀教材中的相關(guān)內容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導,解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無(wú)序性.只要構成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等.
2.教師組織引導學(xué)生思考以下問(wèn)題:
判斷以下元素的全體是否組成集合,并說(shuō)明理由:
(1)大于3小于11的偶數;
(2)我國的小河流.
讓學(xué)生充分發(fā)表自己的建解.
3.讓學(xué)生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說(shuō)明理由.教師對學(xué)生的學(xué)習活動(dòng)給予及時(shí)的評價(jià).
4.教師提出問(wèn)題,讓學(xué)生思考
(1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.[來(lái)源:Z,xx,k.com]
如果是集合A的元素,就說(shuō)屬于集合A,記作.
如果不是集合A的元素,就說(shuō)不屬于集合A,記作.
(2)如果用A表示"所有的安理會(huì )常任理事國"組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數學(xué)符號分別表示.
(3)讓學(xué)生完成教材第6頁(yè)練習第1題.
5.教師引導學(xué)生回憶數集擴充過(guò)程,然后閱讀教材中的相交內容,寫(xiě)出常用數集的記號.并讓學(xué)生完成習題1.1A組第1題.
6.教師引導學(xué)生閱讀教材中的相關(guān)內容,并思考.討論下列問(wèn)題:
(1)要表示一個(gè)集合共有幾種方式?
(2)試比較自然語(yǔ)言.列舉法和描述法在表示集合時(shí),各自有什么特點(diǎn)?適用的對象是什么?
(3)如何根據問(wèn)題選擇適當的集合表示法?
使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì )它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
(四)鞏固深化,反饋矯正
教師投影學(xué)習:
(1)用自然語(yǔ)言描述集合{1,3,5,7,9};
(2)用例舉法表示集合
(3)試選擇適當的方法表示下列集合:教材第6頁(yè)練習第2題.
設計意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì )三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)[來(lái)源:Zxxk.com]
小結:在師生互動(dòng)中,讓學(xué)生了解或體會(huì )下例問(wèn)題:
1.本節課我們學(xué)習了哪些知識內容?
2.你認為學(xué)習集合有什么意義?
3.選擇集合的表示法時(shí)應注意些什么?
設計意圖:通過(guò)回顧,對概念的發(fā)生與發(fā)展過(guò)程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書(shū)面作業(yè):第13頁(yè)習題1.1A組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類(lèi)似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過(guò)預習教材.
五.板書(shū)分析
PPT
集合的含義與表示
定義例1
集合×××××××
××××××××××××××
元素×××××××
×××××××例2
元素與集合的關(guān)系×××××××
××××××××××××××
作業(yè)××××××××××××××
高中數學(xué)說(shuō)課稿10
說(shuō)教學(xué)目標
A、知識目標:
掌握等差數列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
。1)通過(guò)公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過(guò)程中培養學(xué)生觀(guān)察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認知規律,讓學(xué)生在實(shí)踐中通過(guò)觀(guān)察、嘗試、分析、類(lèi)比的方法導出等差數列的求和公式,培養學(xué)生類(lèi)比思維能力。
。3)通過(guò)對公式從不同角度、不同側面的剖析,培養學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C、情感目標:(數學(xué)文化價(jià)值)
。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
。2)通過(guò)公式的運用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識。
。3)通過(guò)生動(dòng)具體的現實(shí)問(wèn)題,令人著(zhù)迷的數學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數學(xué)的心理體驗,產(chǎn)生熱愛(ài)數學(xué)的情感。
說(shuō)教學(xué)重點(diǎn):
等差數列前n項和的公式。
說(shuō)教學(xué)難點(diǎn):
等差數列前n項和的公式的靈活運用。
說(shuō)教學(xué)方法:
啟發(fā)、討論、引導式。
教具:
現代教育多媒體技術(shù)。
教學(xué)過(guò)程
一、創(chuàng )設情景,導入新課。
師:上幾節,我們已經(jīng)掌握了等差數列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數列的前n項和公式。提起數列求和,我們自然會(huì )想到德國偉大的數學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數學(xué)習題:"把從1到100的自然數加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計算出來(lái)的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀(guān)察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。
生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫(xiě)成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個(gè)
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個(gè)101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數列的哪一個(gè)性質(zhì)呢?
生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導)
師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質(zhì),如何來(lái)導出它的前n項和Sn計算公式呢?根據上面的例子同學(xué)們自己完成推導,并請一位學(xué)生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫(xiě)成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個(gè)
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個(gè)式子稱(chēng)為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學(xué)生總結:這些公式中出現了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應用。
三、公式的應用(通過(guò)實(shí)例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:
。1)1+2+3+。。。。。。+n
。2)1+3+5+。。。。。。+(2n—1)
。3)2+4+6+。。。。。。+2n
。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。
生5:直接利用等差數列求和公式(I),得
。1)1+2+3+。。。。。。+n=
。2)1+3+5+。。。。。。+(2n—1)=
。3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開(kāi),可看成兩個(gè)等差數列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數列,但有一個(gè)規律,兩項結合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個(gè)
師:很好!在解題時(shí)我們應仔細觀(guān)察,尋找規律,往往會(huì )尋找到好的方法。注意在運用Sn公式時(shí),要看清等差數列的項數,否則會(huì )引起錯解。
例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過(guò)上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據例3自己編題,作為本節的課外練習題,以便下節課交流。
師:(繼續引導學(xué)生,將第(2)小題改編)
、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導學(xué)生運用等差數列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀(guān)點(diǎn)認識Sn公式。
例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來(lái)看第(1)小題,寫(xiě)出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么?
生10:根據等差數列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對。ê(jiǎn)單小結)這個(gè)題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數學(xué)問(wèn)題的體現。
師:由于時(shí)間關(guān)系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學(xué)生觀(guān)察當d≠0時(shí),Sn是n的二次函數,那么從二次(或一次)的函數的觀(guān)點(diǎn)如何來(lái)認識Sn公式后,這留給同學(xué)們課外繼續思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說(shuō)明理由。
四、小結與作業(yè)。
師:接下來(lái)請同學(xué)們一起來(lái)小結本節課所講的內容。
生11:1、用倒序相加法推導等差數列前n項和公式。
2、用所推導的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數列的項數n的值。
2、具體用Sn公式時(shí),要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時(shí),要認真觀(guān)察,靈活應用等差數列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過(guò)以上幾例,說(shuō)明在解題中靈活應用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習方法。同時(shí)希望大家在學(xué)習中做一個(gè)有心人,去發(fā)現更多的性質(zhì),主動(dòng)積極地去學(xué)習。
本節所滲透的數學(xué)方法;觀(guān)察、嘗試、分析、歸納、類(lèi)比、特定系數等。
數學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數思想等。
作業(yè):P49:13、14、15、17
高中數學(xué)說(shuō)課稿11
各位評委老師好:今天我說(shuō)課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評價(jià)四個(gè)方面加以說(shuō)明。
一、 教材分析
是在學(xué)習了基礎上進(jìn)一步研究 并為后面學(xué)習 做準備,在整個(gè)
高中數學(xué)中起著(zhù)承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標
1、 知識能力目標:使學(xué)生理解掌握
2、 過(guò)程方法目標:通過(guò)觀(guān)察歸納抽象概括使學(xué)生構建領(lǐng)悟 數學(xué)思想,培養 能力
3、 情感態(tài)度價(jià)值觀(guān)目標:通過(guò)學(xué)習體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養善于
觀(guān)察勇于思考的學(xué)習習慣和嚴謹 的科學(xué)態(tài)度
根據教學(xué)目標、本節特點(diǎn)和學(xué)生實(shí)際情況本節重點(diǎn)是 ,由于學(xué)生對 缺少感性認識,所以本節課的重點(diǎn)是
二、教法學(xué)法
根據教師主導地位和學(xué)生主體地位相統一的規律,我采用引導發(fā)現法為本節課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。
三、 教學(xué)過(guò)程
四、 教學(xué)程序及設想
1、由……引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:……
2、由實(shí)例得出本課新的知識點(diǎn)是:……
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習……
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
五、教學(xué)評價(jià)
學(xué)生學(xué)習的學(xué)習結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià),教師應
當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神合作意識數學(xué)能力的發(fā)現,以及學(xué)習的興趣和成就感。
高中數學(xué)說(shuō)課稿12
各位老師:
大家好!我叫周婷婷,來(lái)自湖南科技大學(xué)。我說(shuō)課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過(guò)程分析等五大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
現代社會(huì )是一個(gè)信息技術(shù)發(fā)展很快的社會(huì ),算法進(jìn)入高中數學(xué)正是反映了時(shí)代的需要,它是當今社會(huì )必備的基礎知識,算法的學(xué)習是使用計算機處理問(wèn)題前的一個(gè)必要的步驟,它可以讓學(xué)生們知道如何利用現代技術(shù)解決問(wèn)題。又由于算法的具體實(shí)現上可以和信息技術(shù)相結合。因此,算法的學(xué)習十分有利于提高學(xué)生的邏輯思維能力,培養學(xué)生的理性精神和實(shí)踐能力。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):初步理解算法的定義,體會(huì )算法思想,能夠用自然語(yǔ)言描述算法難點(diǎn):把自然語(yǔ)言轉化為算法語(yǔ)言。
二、教學(xué)目標分析
1.知識目標:了解算法的含義,體會(huì )算法的思想;能夠用自然語(yǔ)言描述解決具體問(wèn)題的算法;理解正確的算法應滿(mǎn)足的要求。
2.能力目標:讓學(xué)生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學(xué)生的觀(guān)察能力,表達能力和邏輯思維能力。
3.情感目標:對計算機的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認識到計算機是人類(lèi)征服自然的一有力工具,進(jìn)一步提高探索、認識世界的能力。
三、教學(xué)方法分析
采用"問(wèn)題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動(dòng)發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題,培養學(xué)生的探究論證、邏輯思維能力。
四、學(xué)情分析
算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節,但很容易激發(fā)學(xué)生的學(xué)習興趣。在教師的引導下,通過(guò)多媒體輔助教學(xué),學(xué)生比較容易掌握本節課的內容。
五、教學(xué)過(guò)程分析
1.創(chuàng )設情景:我首先向學(xué)生們展示章頭圖,介紹圖中的后景是取自宋朝數學(xué)家朱世杰的數學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現了中國古代數學(xué)與現代計算機科學(xué)的聯(lián)系,它們的基礎都是"算法".
「設計意圖」是為了充分挖掘章頭圖的教學(xué)價(jià)值,體現
1)算法概念的由來(lái);
2)我們將要學(xué)習的算法與計算機有關(guān);
3)展示中國古代數學(xué)的成就;
4)激發(fā)學(xué)生學(xué)習算法的興趣。從而順其自然的過(guò)渡到本節課要討論的話(huà)題。(約4分鐘)
2.引入新課:在這一環(huán)節我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過(guò)程,培養思維的條理性,引導學(xué)生關(guān)注更具一般性解法,形成解法向算法過(guò)渡的準備,為建立算法概念打下基礎。緊接著(zhù)在此基礎上進(jìn)一步復習回顧解一般的二元一次方程組的步驟,引導學(xué)生分析解題過(guò)程的結構,寫(xiě)出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數據,體驗計算機直接給出方程組的解。目的是讓學(xué)生明白算法是用來(lái)解決某一類(lèi)問(wèn)題的,從而提高學(xué)生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。
之后,我就向學(xué)生們提出問(wèn)題:到底什么是算法?如何用語(yǔ)言來(lái)表達算法的涵義?這里讓學(xué)生們根據剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過(guò)程中來(lái),體會(huì )算法思想。(約8分鐘)
3.例題講解:在這一環(huán)節我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應用到實(shí)際解決問(wèn)題中去,而不只是單純的對數學(xué)思想的領(lǐng)悟。
這兩道例題均選自課本的例1和例2.
例1是讓我們設定一個(gè)程序以判斷一個(gè)數是否為質(zhì)數。質(zhì)數是我們之前已經(jīng)學(xué)習的內容,為了能更順利地完成解題過(guò)程,這里有必要引導學(xué)生們回顧一下質(zhì)數應滿(mǎn)足的條件,然后再根據這個(gè)來(lái)探索解題步驟。通過(guò)例1讓學(xué)生認識到求解結構中存在"重復".為導出一般問(wèn)題的算法創(chuàng )造條件,也為學(xué)習算法的自然語(yǔ)言表示提供前提。告訴學(xué)生們本算法就是用自然語(yǔ)言的形式描述的。并且設計算法一定要做到以下要求:
。1)寫(xiě)出的算法必須能解決一類(lèi)問(wèn)題,并且能夠重復使用。
。2)要使算法盡量簡(jiǎn)單、步驟盡量少。
。3)要保證算法正確,且計算機能夠執行。
在例1的基礎上我們繼續研究例2,例2是要求我們設計一個(gè)利用二分法來(lái)求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過(guò)程,然后設計出解題步驟。二分法是算法中的經(jīng)典問(wèn)題,具有明顯的順序和可操作的特點(diǎn)。因此通過(guò)例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結構,領(lǐng)會(huì )算法的思想,體會(huì )算法的的特征。同時(shí)也可以鞏固用自然語(yǔ)言描述算法,提高用自然語(yǔ)言描述算法的表達水平。另外,借助例題加強學(xué)生對算法概念的理解,體會(huì )算法具有程序性、有限性、構造性、精確性、指向性的特點(diǎn),算法以問(wèn)題為載體,泛泛而談沒(méi)有意義。(約20分鐘)
4.課堂小結:
。1)算法的概念和算法的基本特征
。2)算法的描述方法,算法可以用自然語(yǔ)言描述。
。3)能利用算法的思想和方法解決實(shí)際問(wèn)題,并能寫(xiě)出一此簡(jiǎn)單問(wèn)題的算法課堂小結是一堂課內容的概括和總結,有利于學(xué)生把握本節課的重點(diǎn),對所學(xué)知識有一個(gè)系統整體的認識。(約6分鐘)
5.布置作業(yè):課本練習1、2題
課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。對作業(yè)實(shí)施分層設置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
高中數學(xué)說(shuō)課稿13
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。
奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著(zhù)承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了一定數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、
3、教學(xué)目標
基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:
【知識與技能】
1、能判斷一些簡(jiǎn)單函數的奇偶性。
2、能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。
【過(guò)程與方法】
經(jīng)歷奇偶性概念的形成過(guò)程,提高觀(guān)察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價(jià)值觀(guān)】
通過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。
從課堂反應看,基本上達到了預期效果。
4、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):函數奇偶性的概念和幾何意義。
幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問(wèn)題。因此,在介紹奇、偶函數的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。
難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。
由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。
二、教法與學(xué)法分析
1、教法
根據本節教材內容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養思維能力。從課堂反應看,基本上達到了預期效果。
2、學(xué)法
讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識。
三、教學(xué)過(guò)程
具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、形成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。
。ㄒ唬┰O疑導入、觀(guān)圖激趣
由于本節內容相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的內容,使學(xué)生的思維迅速定向,達到開(kāi)始就明確目標突出重點(diǎn)的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。通過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。
。ǘ┲笇в^(guān)察、形成概念
在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。
探究1 、2 數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。接著(zhù)學(xué)生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性, ()然后通過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè) 都成立。 最后給出偶函數(奇函數)定義(板書(shū))。
在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。
。ㄈ 學(xué)生探索、領(lǐng)會(huì )定義
探究3 下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))
。ㄋ模┲R應用,鞏固提高
在這一環(huán)節我設計了4道題
例1判斷下列函數的奇偶性
選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。
例1設計意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數的奇偶性:
例3 判斷下列函數的奇偶性:
例2、3設計意圖是探究一個(gè)函數奇偶性的可能情況有幾種類(lèi)型?
例4(1)判斷函數的奇偶性。
。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,達到當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。
在本節課的最后對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見(jiàn)能力是提高數學(xué)綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁(yè)練習第1-2題。
選做題:課本第39頁(yè)習題1、3A組第6題。
思考題:課本第39頁(yè)習題1、3B組第3題。
設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達到不同的人在數學(xué)上得到不同的發(fā)展。
高中數學(xué)說(shuō)課稿14
今天我說(shuō)課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。
一、說(shuō)教材
1、教材的地位和作用
本節內容選自北師大版高中數學(xué)必修1,第二章第3節。函數是高中數學(xué)的課程,它是描述事物運動(dòng)變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學(xué)習奠定重要基礎。
2、學(xué)情分析
本節課的學(xué)生是高一學(xué)生,他們在初中階段,通過(guò)一次函數、二次函數、反比例函數的學(xué)習已經(jīng)對函數的增減性有了初步的感性認識。在高中階段,用符號語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結果,有利于培養學(xué)生的理性思維,為后續函數的學(xué)習作準備,也為利用倒數研究單調性的相關(guān)知識奠定了基礎。
教學(xué)目標分析
基于以上對教材和學(xué)情的分析以及新課標教學(xué)理念,我將教學(xué)目標分為以下三個(gè)部分:
1、知識與技能(1)理解函數的單調性和單調函數的意義;
。2)會(huì )判斷和證明簡(jiǎn)單函數的單調性。
2、過(guò)程與方法
。1)培養從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;
。2)體會(huì )數形結合、分類(lèi)討論的數學(xué)思想。
3、情感態(tài)度與價(jià)值觀(guān)
由合適的例子引發(fā)學(xué)生探求數學(xué)知識的欲望,突出學(xué)生的主觀(guān)能動(dòng)性,激發(fā)學(xué)生學(xué)習數學(xué)的興趣。
三、教學(xué)重難點(diǎn)分析
通過(guò)以上對教材和學(xué)生的分析以及教學(xué)目標,我將本節課的重難點(diǎn)
重點(diǎn):
函數單調性的概念,判斷和證明簡(jiǎn)單函數的單調性。
難點(diǎn):
1、函數單調性概念的認知
。1)自然語(yǔ)言到符號語(yǔ)言的轉化;
。2)常量到變量的轉化。
2、應用定義證明單調性的代數推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對教材、學(xué)情的分析以及新課標的教學(xué)理念,本節課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數學(xué)在生活中的應用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會(huì )怎樣學(xué)習,為終生學(xué)習奠定扎實(shí)的基礎。所以本節課我將引導學(xué)生通過(guò)合作交流、自主探索的方法理解函數的單調性及特征。
五、教學(xué)過(guò)程
為了更好的實(shí)現本課的三維目標,并突破重難點(diǎn),我設計以下五個(gè)環(huán)節來(lái)進(jìn)行我的教學(xué)。
。ㄒ唬┲R導入
溫故而知新,我將先從之前學(xué)習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數的圖像,然后讓學(xué)生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數圖像的情況,而且符合學(xué)生的認知結構,通過(guò)學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過(guò)程中構建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習的積極主動(dòng)性。
。ǘ┲v授新課
1.問(wèn)題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個(gè)區間是上升的,在哪個(gè)區間是下降的?
通過(guò)學(xué)生熟悉的圖像,及時(shí)引導學(xué)生觀(guān)察,函數圖像上A點(diǎn)的運動(dòng)情況,引導學(xué)生能用自然語(yǔ)言描述出,隨著(zhù)x增大時(shí)圖像變化規律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。
2、觀(guān)察函數y=x2隨自變量x變化的情況,設置啟發(fā)式問(wèn)題:
。1)在y軸的右側部分圖象具有什么特點(diǎn)?
。2)如果在y軸右側部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當x1< p="">
。3)如何用數學(xué)符號語(yǔ)言來(lái)描述這個(gè)規律?
教師補充:這時(shí)我們就說(shuō)函數y=x2在(0,+∞)上是增函數。
。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?
類(lèi)似地分析圖象在y軸的左側部分。
通過(guò)對以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì )函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關(guān)鍵詞,如:區間內,任意,當x1< p="">
仿照單調增函數定義,由學(xué)生說(shuō)出單調減函數的定義。
教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個(gè)區間上的局部性質(zhì),也就是說(shuō),一個(gè)函數在不同的區間上可以有不同的單調性。
。ㄎ覍⒔o出函數y=x2,并畫(huà)出這個(gè)函數的圖像,讓學(xué)生觀(guān)察函數圖像的特點(diǎn),讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個(gè)過(guò)程中,學(xué)生把對圖像的感性認識轉化為了數學(xué)關(guān)系,這種從特殊到一般的學(xué)習過(guò)程有利于學(xué)生對概念的理解)
。ㄈ╈柟叹毩
1練習1:說(shuō)出函數f(x)=的單調區間,并指明在該區間上的單調性。x
練習2:練習2:判斷下列說(shuō)法是否正確
、俣x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上的增函數。
、诙x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上不是減函數。
1③已知函數y=,因為f(-1)< p="">
1我將給出一些具體的函數,如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數的單調區間,并指明在該區間x
上的單調性。通過(guò)這種練習的方式,幫助學(xué)生鞏固對知識的掌握。
。ㄋ模w納總結
我先讓學(xué)生進(jìn)行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進(jìn)行補充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習情況有一定的了解,為下一節課的教學(xué)過(guò)程做好準備。
。ㄎ澹┎贾米鳂I(yè)
必做題:習題2-3A組第2,4,5題。
選做題:習題2-3B組第2題。
新課程理念告訴我們,不同的人在數學(xué)上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。
高中數學(xué)說(shuō)課稿15
高三第一階段復習,也稱(chēng)“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復習鞏固各個(gè)知識點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過(guò)的知識產(chǎn)生全新認識。在高一、高二時(shí),是以知識點(diǎn)為主線(xiàn)索,依次傳授講解的,由于后面的相關(guān)知識還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復習時(shí),以章節為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來(lái),并將他們系統化、綜合化,把各個(gè)知識點(diǎn)融會(huì )貫通。對于普通高中的學(xué)生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實(shí)效。
一、內容分析說(shuō)明
1、本小節內容是初中學(xué)習的多項式乘法的繼續,它所研究的二項式的乘方的展開(kāi)式,與數學(xué)的其他部分有密切的聯(lián)系:
。1)二項展開(kāi)式與多項式乘法有聯(lián)系,本小節復習可對多項式的變形起到復習深化作用。
。2)二項式定理與概率理論中的二項分布有內在聯(lián)系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò )。
。3)二項式定理是解決某些整除性、近似計算等問(wèn)題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的
試題,考察的題型穩定,通常以選擇題或填空題出現,有時(shí)也與應用題結合在一起求某些數、式的
近似值。
二、學(xué)校情況與學(xué)生分析
。1)我校是一所鎮普通高中,學(xué)生的基礎不好,記憶力較差,反應速度慢,普遍感到數學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀(guān)上有學(xué)好數學(xué)的愿望。
。2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續從事某項數學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。
三、教學(xué)目標
復習課二項式定理計劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復習二項展開(kāi)式和通項。根據歷年高考對這部分的考查情況,結合學(xué)生的特點(diǎn),設定如下教學(xué)目標:
1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個(gè)特征熟記它的展開(kāi)式。
。2)會(huì )運用展開(kāi)式的通項公式求展開(kāi)式的特定項。
2、能力目標:(1)教給學(xué)生怎樣記憶數學(xué)公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數學(xué)能力,是其它能力的基礎。
。2)樹(shù)立由一般到特殊的解決問(wèn)題的意識,了解解決問(wèn)題時(shí)運用的數學(xué)思想方法。
3、情感目標:通過(guò)對二項式定理的復習,使學(xué)生感覺(jué)到能掌握數學(xué)的部分內容,樹(shù)立學(xué)好數學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。
四、教學(xué)過(guò)程
1、知識歸納
。1)創(chuàng )設情景:①同學(xué)們,還記得嗎?、 、展開(kāi)式是什么?
、趯W(xué)生一起回憶、老師板書(shū)。
設計意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。
、跒閷W(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。
。2)二項式定理:①設問(wèn)展開(kāi)式是什么?待學(xué)生思考后,老師板書(shū)
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
、诶蠋熞髮W(xué)生說(shuō)出二項展開(kāi)式的特征并熟記公式:共有項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。
、垤柟叹毩曁羁
設計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規律。
、谧冇霉,熟悉公式。
。3)展開(kāi)式中各項的系數C,C,C,…,稱(chēng)為二項式系數。
展開(kāi)式的通項公式Tr+1=C an-rbr,其中r= 0,1,2,…n表示展開(kāi)式中第r+1項。
2、例題講解
例1求的展開(kāi)式的第4項的二項式系數,并求的第4項的系數。
講解過(guò)程
設問(wèn):這里,要求的第4項的有關(guān)系數,如何解決?
學(xué)生思考計算,回答問(wèn)題;
老師指明①當項數是4時(shí),,此時(shí),所以第4項的二項式系數是,
、诘4項的系數與的第4項的二項式系數區別。
板書(shū)
解:展開(kāi)式的第4項
所以第4項的系數為,二項式系數為。
選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。
例2求的展開(kāi)式中不含的項。
講解過(guò)程
設問(wèn):①不含的項是什么樣的項?即這一項具有什么性質(zhì)?
、趩(wèn)題轉化為第幾項是常數項,誰(shuí)能看出哪一項是常數項?
師生討論“看不出哪一項是常數項,怎么辦?”
共同探討思路:利用通項公式,列出項數的方程,求出項數。
老師總結思路:先設第項為不含的項,得,利用這一項的指數是零,得到關(guān)于的方程,解出后,代回通項公式,便可得到常數項。
板書(shū)
解:設展開(kāi)式的第項為不含項,那么
令,解得,所以展開(kāi)式的第9項是不含的項。
因此。
選題意圖:①鞏固運用展開(kāi)式的通項公式求展開(kāi)式的特定項,形成基本技能。
、谂袛嗟趲醉検浅淀椷\用方程的思想;找到這一項的項數后,實(shí)現了轉化,體現轉化的數學(xué)思想。
例3求的展開(kāi)式中,的系數。
解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的系數。
板書(shū)
解:由于,則的展開(kāi)式中的系數為的展開(kāi)式中的系數之和。
而的展開(kāi)式含的項分別是第5項、第4項和第3項,則的展開(kāi)式中的系數分別是:。
所以的展開(kāi)式中的系數為
例4如果在(+)n的展開(kāi)式中,前三項系數成等差數列,求展開(kāi)式中的有理項。
解:展開(kāi)式中前三項的系數分別為1,,,
由題意得2× =1+,得n=8.
設第r+1項為有理項,T =C · ·x,則r是4的倍數,所以r=0,4,8.
有理項為T(mén)1=x4,T5= x,T9= 。
3、課堂練習
1、(20xx年江蘇,7)(2x+)4的展開(kāi)式中x3的系數是
A.6B.12 C.24 D.48
解析:(2x+)4=x2(1+2)4,在(1+2)4中,x的系數為C ·22=24.
答案:C
2、(20xx年全國Ⅰ,5)(2x3-)7的展開(kāi)式中常數項是
A.14 B.14 C.42 D.-42
解析:設(2x3-)7的展開(kāi)式中的第r+1項是T =C(2x3)(-)r=C 2 ·
。ǎ1)r·x,
當-+3(7-r)=0,即r=6時(shí),它為常數項,∴C(-1)6·21=14.
答案:A
3、(20xx年湖北,文14)已知(x +x)n的展開(kāi)式中各項系數的和是128,則展開(kāi)式中x5的系數是_____________.(以數字作答)
解析:∵(x +x)n的展開(kāi)式中各項系數和為128,
∴令x=1,即得所有項系數和為2n=128.
∴n=7.設該二項展開(kāi)式中的r+1項為T(mén) =C(x)·(x)r=C ·x,
令=5即r=3時(shí),x5項的系數為C =35.
答案:35
五、課堂教學(xué)設計說(shuō)明
1、這是一堂復習課,通過(guò)對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關(guān)概念的理解和認識,形成求二項式展開(kāi)式某些指定項的基本技能,同時(shí),要培養學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。
2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng )造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關(guān)系求出,此后轉化為第一層次的問(wèn)題。第三層次突出數學(xué)思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實(shí)現轉化的手段。在求每個(gè)局部展開(kāi)式的某項系數時(shí),又有分類(lèi)討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過(guò)程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問(wèn)題。
六、個(gè)人見(jiàn)解
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)的說(shuō)課稿11-04
高中數學(xué)經(jīng)典說(shuō)課稿范文06-24
高中數學(xué)集合說(shuō)課稿11-12
高中數學(xué)面試說(shuō)課稿11-18
高中數學(xué)說(shuō)課稿05-01
高中數學(xué)說(shuō)課稿06-09