有關(guān)小學(xué)趣味運動(dòng)會(huì )作文四篇
作為一名人民教師,編寫(xiě)說(shuō)課稿是必不可少的,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。那么問(wèn)題來(lái)了,說(shuō)課稿應該怎么寫(xiě)?下面是小編幫大家整理的高中數學(xué)說(shuō)課稿10篇,僅供參考,希望能夠幫助到大家。

高中數學(xué)說(shuō)課稿 篇1
各位評委,老師們:大家好!
很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。
我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的.認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
二說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
三說(shuō)教學(xué)方法的選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩2]下列命題正確的是( )
A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線(xiàn),則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學(xué)說(shuō)課稿 篇2
一、說(shuō)教材:
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學(xué)生對導數的概念已經(jīng)有了充分的認識,本節課教材從形的角度即割線(xiàn)入手,用形象直觀(guān)的“逼近”方法定義了切線(xiàn),獲得導數的幾何意義,更有利于學(xué)生理解導數概念的本質(zhì)內涵. 這節課可以利用幾何畫(huà)板進(jìn)行動(dòng)畫(huà)演示,讓學(xué)生通過(guò)觀(guān)察、思考、發(fā)現、思維、運用形成完整概念. 通過(guò)本節的學(xué)習,可以幫助學(xué)生更好的體會(huì )導數是研究函數的單調性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內容。
2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵
教學(xué)重點(diǎn):導數的幾何意義、切線(xiàn)方程的求法以及“數形結合,逼近”的思想方法。
教學(xué)難點(diǎn):理解導數的幾何意義的本質(zhì)內涵
1) 從割線(xiàn)到切線(xiàn)的過(guò)程中采用的逼近方法;
2) 理解導數的概念,將多方面的意義聯(lián)系起來(lái),例如,導數反映了函數f(x)在點(diǎn)x附近的變化快慢,導數是曲線(xiàn)上某點(diǎn)切線(xiàn)的斜率,等等.
二、說(shuō)教學(xué)目標:
根據新課程標準的要求、學(xué)生的認知水平,確定教學(xué)目標如下:
1、知識與技能 :
通過(guò)實(shí)驗探求理解導數的幾何意義,理解曲線(xiàn)在一點(diǎn)的切線(xiàn)的概念,會(huì )求簡(jiǎn)單函數在某點(diǎn)的切線(xiàn)方程。
過(guò)程與方法:
經(jīng)歷切線(xiàn)定義的形成過(guò)程,培養學(xué)生分析、抽象、概括等思維能力;體會(huì )導數的思想及內涵,完善對切線(xiàn)的認識和理解
通過(guò)逼近、數形結合思想的具體運用,使學(xué)生達到思維方式的遷移,了解科學(xué)的思維方法。
3、情感態(tài)度與價(jià)值觀(guān):
滲透逼近、數形結合、以直代曲等數學(xué)思想,激發(fā)學(xué)生學(xué)習興趣,引導學(xué)生領(lǐng)悟特殊與一般、有限與無(wú)限,量變與質(zhì)變的辯證關(guān)系,感受數學(xué)的統一美,意識到數學(xué)的應用價(jià)值
三、說(shuō)教法與學(xué)法
對于直線(xiàn)來(lái)說(shuō)它的導數就是它的斜率,學(xué)生會(huì )很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過(guò)了圓錐曲線(xiàn),學(xué)生對曲線(xiàn)的切線(xiàn)的概念也有了一些認識,基于以上學(xué)情分析,我確定下列教法:
教法:從圓的切線(xiàn)的定義引入本課,再引導學(xué)生討論一般曲線(xiàn)的切線(xiàn)的定義,通過(guò)幾何畫(huà)板的動(dòng)畫(huà)演示,得出曲線(xiàn)的切線(xiàn)的“逼近”法的定義.同樣通過(guò)幾何畫(huà)板的實(shí)驗觀(guān)察得到導數的幾何意義和直觀(guān)感知“逼近”的數學(xué)思想.因此,我采用實(shí)驗觀(guān)察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結合,以突出重點(diǎn)和突破難點(diǎn);
學(xué)法:為了發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,提高學(xué)生的綜合能力,本節課采取了
自主 、合作、探究的學(xué)習方法。
教具: 幾何畫(huà)板、幻燈片
四、說(shuō)教學(xué)程序
1.創(chuàng )設情境
學(xué)生活動(dòng)——問(wèn)題系列
問(wèn)題1 平面幾何中我們是怎樣判斷直線(xiàn)是否是圓的割線(xiàn)或切線(xiàn)的呢?
問(wèn)題2 如圖直線(xiàn)l是曲線(xiàn)C的切線(xiàn)嗎?
(1)與 (2)與 還有直線(xiàn)與雙曲線(xiàn)的位置關(guān)系
問(wèn)題3 那么對于一般的曲線(xiàn),切線(xiàn)該如何定義呢?
【設計意圖】:通過(guò)類(lèi)比構建認知沖突。
學(xué)生活動(dòng)——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。
2.探索求知
學(xué)生活動(dòng)——試驗探究
問(wèn)一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時(shí),平均變化率無(wú)限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問(wèn)二;你能借助圖像說(shuō)說(shuō)平均變化率表示什么嗎?請在函數圖像中畫(huà)出來(lái)。
【設計意圖】:通過(guò)學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線(xiàn)PQ的斜率。
問(wèn)三;在的過(guò)程中,你能描述一下割線(xiàn)PQ的變化情況嗎?請在圖像中畫(huà)出來(lái)。
【設計意圖】:分別從“數”和“形”的角度描述的過(guò)程情況。從數的角度看,,Q();從形的角度看, 的過(guò)程中,Q點(diǎn)向P點(diǎn)無(wú)限趨近,割線(xiàn)PQ趨近于確定的'位置,這個(gè)位置的直線(xiàn)叫做曲線(xiàn)在 處的切線(xiàn)。
探究一:學(xué)生通過(guò)幾何畫(huà)板的演示觀(guān)察割線(xiàn)的變化趨勢,教師引導給出一般曲線(xiàn)的切線(xiàn)定義。
【設計意圖】: 借助多媒體教學(xué)手段引導學(xué)生發(fā)現導數的幾何意義,使問(wèn)題變得直觀(guān),易于突破難點(diǎn);學(xué)生在過(guò)程中,可以體會(huì )逼近的思想方法。能夠同時(shí)從數與形兩個(gè)角度強化學(xué)生對導數概念的理解。
問(wèn)四;你能從上述過(guò)程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學(xué)生發(fā)現并說(shuō)出:,割線(xiàn)PQ切線(xiàn)PT,所以割線(xiàn)
PQ的斜率切線(xiàn)PT的斜率。因此,=切線(xiàn)PT的斜率。
五、教學(xué)評價(jià)
1、通過(guò)學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對學(xué)生的學(xué)習過(guò)程評價(jià);
2、通過(guò)學(xué)生對方法的選擇,對學(xué)生的學(xué)習能力評價(jià);
3、通過(guò)練習、課后作業(yè),對學(xué)生的學(xué)習效果評價(jià).
4、教學(xué)中,學(xué)生以研究者的身份學(xué)習,在問(wèn)題解決的過(guò)程中,通過(guò)自身的體驗對知識的認識從模糊到清晰,從直觀(guān)感悟到精確掌握;
5、本節課設計目標力求使學(xué)生體會(huì )微積分的基本思想,感受近似與精確的統一,運動(dòng)和靜止的統一,感受量變到質(zhì)變的轉化。希望利用這節課滲透辨證法的思想精髓.
高中數學(xué)說(shuō)課稿 篇3
一、教材分析:
1、教材的地位與作用。
本節內容是在學(xué)生學(xué)習了“事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小!庇酶怕暑A測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。
在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下面學(xué)習求比較復雜的`情況的概率打下基礎。
2、重點(diǎn)與難點(diǎn)。
重點(diǎn):對概率意義的理解,通過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。
情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。
三、教法、學(xué)法分析:
引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現“教” 為“學(xué)”服務(wù)這一宗旨。
四、教學(xué)過(guò)程分析:
1、引導學(xué)生探究
精心設計問(wèn)題一,學(xué)生通過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的“確定事件和不確定事件”的知識,為學(xué)好本節內容理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大小)。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。
2、歸納概括
學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。
引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題能力,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。
P(A)= = = (m
3、舉例應用
、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。
、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
深化發(fā)展
、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。
、谱寣W(xué)生設計活動(dòng)內容,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新能力。
高中數學(xué)說(shuō)課稿 篇4
各位評委老師,大家好!
我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。
一、教材分析
1、教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
2、教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的證明
能力目標:培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:培養學(xué)生勇于探索的精神和善于合作的意識
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的.圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1、3A組1、2、3 ,二組 習題1、3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
以上就是我對本節課的設計,謝謝!
高中數學(xué)說(shuō)課稿 篇5
各位老師:
大家好!
我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著(zhù)前面學(xué)過(guò)的隨機事件的概率及其性質(zhì),又是以后學(xué)習條件概率的基礎,起到承前啟后的作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型及其概率計算公式。
難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉化成古典概型。
二、教學(xué)目標分析
1.知識與技能目標
。1)通過(guò)試驗理解基本事件的概念和特點(diǎn)
。2)在數學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導出古典概型下的概率的計算公式。
2、過(guò)程與方法:
經(jīng)歷公式的推導過(guò)程,體驗由特殊到一般的數學(xué)思想方法。
3、情感態(tài)度與價(jià)值觀(guān):
。1)用具有現實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習興趣,培養學(xué)生勇于探索,善于發(fā)現的創(chuàng )新思想。
。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應用于實(shí)踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。
2、學(xué)法分析:學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。
、鍎(chuàng )設情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出兩個(gè)問(wèn)題。
1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。
2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?]
「設計意圖」通過(guò)課前的.模擬實(shí)驗,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深對新概念的理解。
[基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?
先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。
「設計意圖」將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)
觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):
讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。
[經(jīng)概括總結后得到:
。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。
、缬^(guān)察分析、推導方程
問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。
提問(wèn):
。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?
。2)在使用古典概型的概率公式時(shí),應該注意什么?
「設計意圖」教師提問(wèn),學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
、枥}分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。
「設計意圖」讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點(diǎn)數之和是5的結果有多少種?
。3)向上的點(diǎn)數之和是5的概率是多少?
先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。
「設計意圖」通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是--研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。
、昕偨Y概括、加深理解
1.基本事件的特點(diǎn)
2.古典概型的特點(diǎn)
3.古典概型的概率計算公式
學(xué)生小結歸納,不足的地方老師補充說(shuō)明。
「設計意圖」使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
、氩贾米鳂I(yè)
課本練習1、2、3
「設計意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。
高中數學(xué)說(shuō)課稿 篇6
各位老師,大家好!
我是08數學(xué)本科(2)班的xx,我今天說(shuō)課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.
一、教材分析
集合的含義與表示是選自高中新課標A版教材必修1第一章第一節內容。在此之前,學(xué)生已經(jīng)接觸過(guò)集合的一些相關(guān)概念,如自然數的集合、有理數的集合.集合是一個(gè)基礎性概念,是數學(xué)以至所有科學(xué)的基礎,應用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現,在高考中具有不可忽視的地位.本節內容能夠培養學(xué)生的探索精神和數學(xué)素養.
二、教學(xué)目標
根據上述對教材的分析,我確定本節課的教學(xué)目標為 1. 知識與技能目標 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數集.培養學(xué)生的抽象思維能力、分析能力、判斷能力.
2. 過(guò)程與方法目標
應用自然語(yǔ)言與集合語(yǔ)言描述不同的具體問(wèn)題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.
3. 情感態(tài)度價(jià)值觀(guān)目標
使得學(xué)生感受數學(xué)的簡(jiǎn)潔美與和諧統一美. 培養學(xué)生正確的、高尚的、唯物的價(jià)值觀(guān).培養學(xué)生獨立思考、敢于創(chuàng )新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習數學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)
重點(diǎn):根據上述對教材的分析,確定的教學(xué)目標,我確定本節課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.
難點(diǎn):考慮到學(xué)生已有的知識基礎與認知能力,我認為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析
。1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀(guān)察能力、記憶能力和想象能力也隨之迅速發(fā)展.
。2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說(shuō)教.
。3)認知障礙:有的學(xué)生遺忘了學(xué)過(guò)的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法
根據上面的分析,從高中生的心理特點(diǎn)和認知水平出發(fā),結合學(xué)生的實(shí)際情況與認知障礙,按照突出重點(diǎn),突破難點(diǎn),本節課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過(guò)程(用描述性語(yǔ)言,不要具體化。
根據以上分析,我對本節課的教學(xué)過(guò)程作如下安排:
1.引入課題
先引導學(xué)生回顧自然數的集合,有理數的集合,再提出問(wèn)題:集合的含義是什么呢? 2.新課講解
。1)分析自然數的集合,有理數的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.
。2)根據上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見(jiàn)的數集.
。3)為了化解教學(xué)難點(diǎn),我將結合具體的例子,講解列舉法與描述法.
。4)為了加強學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問(wèn)題的能力,我將講解三個(gè)不同題型、不同難度的例題. 3.課堂練習
為了使得學(xué)生掌握等差數列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類(lèi)型、不同難度的練習題.
4.歸納小結
完成以上的教學(xué)內容后,我將組織學(xué)生對本節課的內容做一個(gè)總結,強調重點(diǎn). 5.布置作業(yè)
為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類(lèi)型、不同難度的作業(yè)題. 六、板書(shū)設計
結合中學(xué)黑板的特點(diǎn),我將如下板書(shū)本節教學(xué)內容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見(jiàn)數集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習 作業(yè) 各位老師,以上只是我的一種預設方案,但課堂千變萬(wàn)化,我將根據實(shí)際情況靈活掌握,隨機發(fā)揮.本說(shuō)課一定存在諸多不足,懇請各位老師提出寶貴意見(jiàn),謝謝! 1.1.2集合間的基本關(guān)系
數學(xué)必修1第一章第二節第1小節《集合間的基本關(guān)系》說(shuō)課稿.
一 、教學(xué)內容分析
集合概念及其理論是近代數學(xué)的基石,集合語(yǔ)言是現代數學(xué)的基本語(yǔ)言,通過(guò)學(xué)習、使用集合語(yǔ)言,有利于學(xué)生簡(jiǎn)潔、準確地表達數學(xué)內容,高中課程只將集合作為一種語(yǔ)言來(lái)學(xué)
習,學(xué)生將學(xué)會(huì )使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力.
本章集合的初步知識是學(xué)生學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎,是高中數學(xué)學(xué)習的出發(fā)點(diǎn)。本小節內容是在學(xué)習了集合的概念以及集合的'表示方法、元素與集合的從屬關(guān)系的基礎上,進(jìn)一步學(xué)習集合與集合之間的關(guān)系,同時(shí)也是下一節學(xué)習集合之間的運算的基礎,因此本小節起著(zhù)承上啟下的重要作用.
本節課的教學(xué)重視過(guò)程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過(guò)問(wèn)題情境的設置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數學(xué)思維。
二、學(xué)情分析
本節課是學(xué)生進(jìn)入高中學(xué)習的第3節數學(xué)課,也是學(xué)生正式學(xué)習集合語(yǔ)言的第3節課。由于一切對于學(xué)生來(lái)說(shuō)都是新的,所以學(xué)生的學(xué)習興趣相對來(lái)說(shuō)比較濃厚,有利于學(xué)習活動(dòng)的展開(kāi)。而集合對于學(xué)生來(lái)說(shuō)既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數軸求簡(jiǎn)單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語(yǔ)言來(lái)描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個(gè)挑戰。
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標和教學(xué)重、難點(diǎn)如下:
三、教學(xué)目標: 知識與技能目標:
。1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;
。3)能使用Venn圖表達集合之間的包含關(guān)系 過(guò)程與方法目標:
。1)通過(guò)復習元素與集合之間的關(guān)系,對照實(shí)數的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;
。2)初步經(jīng)歷使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象的過(guò)程,體會(huì )集合語(yǔ)言,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力;
情感、態(tài)度、價(jià)值觀(guān)目標:
。1)了解集合的包含、相等關(guān)系的含義,感受集合語(yǔ)言在描述客觀(guān)現實(shí)和數學(xué)問(wèn)題中的意義;
。2)探索利用直觀(guān)圖示(Venn圖)理解抽象概念,體會(huì )數形結合的思想。
四、本節課教學(xué)的重、難點(diǎn):
重點(diǎn):(1)幫助學(xué)生由具體到抽象地認識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過(guò)程設計
1.新課的引入——設置問(wèn)題情境,激發(fā)學(xué)習興趣
我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習方式。那我們來(lái)思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當學(xué)生感興趣時(shí);當學(xué)生智力遭遇到挑戰時(shí);當學(xué)生能自主地參與探索和創(chuàng )新時(shí);當學(xué)生能夠學(xué)以致用時(shí);當學(xué)生得到鼓勵與信任時(shí),他們學(xué)得最好。數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語(yǔ)言對于學(xué)生來(lái)說(shuō)是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長(cháng)時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習中呢?我在整個(gè)教學(xué)過(guò)程中層層設問(wèn),不斷地向學(xué)生提出挑戰,以激發(fā)學(xué)生的學(xué)習興趣。在引入的環(huán)節,我設計了下面的問(wèn)題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數與數之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問(wèn)題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎上提出這一節課我們來(lái)共同探討集合之間的基本關(guān)系。(板書(shū)課題)
2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問(wèn)題情境1的探究:
具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};
此環(huán)節設置了三個(gè)具體實(shí)例,包含了有限集、無(wú)限集、數集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數集,最為簡(jiǎn)單直觀(guān),對學(xué)生初步認識子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無(wú)限集,需要通過(guò)探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無(wú)限數集,基于學(xué)生初中階段已經(jīng)學(xué)習了用數軸表示不等式的解集,啟發(fā)學(xué)生可以通過(guò)數形結合的方式來(lái)研究集合之間的關(guān)系,從而引出Venn圖。對第一個(gè)例子,借助多媒體演示動(dòng)畫(huà),幫助學(xué)生體會(huì )“任意”性。使學(xué)生在經(jīng)歷直觀(guān)感知、觀(guān)察發(fā)現的基礎上建構子集的概念,并且我在教學(xué)的過(guò)程中特別注重讓學(xué)生說(shuō),借此來(lái)學(xué)習運用集合語(yǔ)言進(jìn)行交流,對于學(xué)生的創(chuàng )新意識和創(chuàng )新結果我都給予積極的評價(jià)。
3、概念的剖析
。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,
。2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。
這里引入了許多新的符號,對初學(xué)者來(lái)說(shuō)容易混淆,是一個(gè)易錯點(diǎn),因此我在這里設置了一個(gè)填空小練習:
0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1
并引導學(xué)生類(lèi)比數與數之間的“≤”“≥”符號來(lái)記憶“?”“?”符號。
4、概念的深化——集合的相等與真子集
問(wèn)題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?
高中數學(xué)說(shuō)課稿 篇7
一、教學(xué)背景分析
1、教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3、教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
(2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
(3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標準方程的求法及其應用。
(2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2、學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究——獲得新知
問(wèn)題二 1、根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2、如果圓心在,半徑為時(shí)又如何呢?
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
(三)應用舉例——鞏固提高
I、直接應用 內化新知
問(wèn)題三 1、寫(xiě)出下列各圓的標準方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2、寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的.關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II、靈活應用 提升能力
問(wèn)題四 1、求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2、求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III、實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
(四)反饋訓練——形成方法
問(wèn)題六 1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2、求圓過(guò)點(diǎn)的切線(xiàn)方程。
3、求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1、課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3、激發(fā)新疑
問(wèn)題七 1、把圓的標準方程展開(kāi)后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計:
橫向闡述教學(xué)設計
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
(三)培養思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數學(xué)說(shuō)課稿 篇8
一、說(shuō)教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。
2、 教學(xué)目標
。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;
b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。
。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;
b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。
。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;
b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。
3、重點(diǎn)和難點(diǎn)
重點(diǎn):集合的概念,元素與集合的關(guān)系。
難點(diǎn):準確理解集合的概念。
二、學(xué)情分析(說(shuō)學(xué)情)
對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。
三、說(shuō)教法
針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的'注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。
四、學(xué)習指導(說(shuō)學(xué)法)
教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。
五、教學(xué)過(guò)程
1、引入新課:
a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。
b、介紹集合論的創(chuàng )始者康托爾
2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。
教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節重點(diǎn)做好鋪墊。
6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。
9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。
10、知識的實(shí)際應用:
問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。
11、課堂小節
以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。
六、評價(jià)
教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程尊重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。
七、教學(xué)反思
1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。
2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。
八、板書(shū)設計
高中數學(xué)說(shuō)課稿 篇9
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。
奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著(zhù)承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了一定數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、
3、教學(xué)目標
基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:
【知識與技能】
1、能判斷一些簡(jiǎn)單函數的奇偶性。
2、能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。
【過(guò)程與方法】
經(jīng)歷奇偶性概念的形成過(guò)程,提高觀(guān)察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價(jià)值觀(guān)】
通過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。
從課堂反應看,基本上達到了預期效果。
4、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):函數奇偶性的概念和幾何意義。
幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問(wèn)題。因此,在介紹奇、偶函數的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。
難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。
由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。
二、教法與學(xué)法分析
1、教法
根據本節教材內容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養思維能力。從課堂反應看,基本上達到了預期效果。
2、學(xué)法
讓學(xué)生在觀(guān)察一歸納一檢驗一應用的.學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識。
三、教學(xué)過(guò)程
具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、形成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。
。ㄒ唬┰O疑導入、觀(guān)圖激趣
由于本節內容相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的內容,使學(xué)生的思維迅速定向,達到開(kāi)始就明確目標突出重點(diǎn)的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。通過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。
。ǘ┲笇в^(guān)察、形成概念
在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。
探究1 、2 數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。接著(zhù)學(xué)生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性, ()然后通過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè) 都成立。 最后給出偶函數(奇函數)定義(板書(shū))。
在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。
。ㄈ 學(xué)生探索、領(lǐng)會(huì )定義
探究3 下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))
。ㄋ模┲R應用,鞏固提高
在這一環(huán)節我設計了4道題
例1判斷下列函數的奇偶性
選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。
例1設計意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數的奇偶性:
例3 判斷下列函數的奇偶性:
例2、3設計意圖是探究一個(gè)函數奇偶性的可能情況有幾種類(lèi)型?
例4(1)判斷函數的奇偶性。
。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,達到當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。
在本節課的最后對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見(jiàn)能力是提高數學(xué)綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁(yè)練習第1-2題。
選做題:課本第39頁(yè)習題1、3A組第6題。
思考題:課本第39頁(yè)習題1、3B組第3題。
設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達到不同的人在數學(xué)上得到不同的發(fā)展。
高中數學(xué)說(shuō)課稿 篇10
一、教材分析(說(shuō)教材):
1. 教材所處的地位和作用:
本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。
2. 教育教學(xué)目標:
根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
(1)知識目標:
(2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。
3. 重點(diǎn),難點(diǎn)以及確定依據:
下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說(shuō)教法)
1. 教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
3. 學(xué)情分析:(說(shuō)學(xué)法)
(1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
(2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。
(3)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
4. 教學(xué)程序及設想:
(1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的.問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
(2)由實(shí)例得出本課新的知識點(diǎn)
(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。
(6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
(7)板書(shū)
(8)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
(一)課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
高中數學(xué)集合教學(xué)反思
集合這章內容,教學(xué)參考書(shū)上安排的課時(shí)為五課時(shí),我們的導學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對學(xué)生的實(shí)際情況估計不足,第一課時(shí)的導學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內容很廣,學(xué)生學(xué)習本章內容時(shí),不僅要理解本章的概念,還要理解與本章內容相關(guān)聯(lián)的其他內容,這些內容有初中學(xué)習過(guò)的內容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì )學(xué)生對元素的性質(zhì)進(jìn)行分析,反復訓練,讓學(xué)生通過(guò)實(shí)例體會(huì )這三個(gè)性質(zhì)。
第二,掌握相關(guān)的符號語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運算—交集和并集。突破難點(diǎn)充分運用數形結合思想,集合間的關(guān)系和運算,以數形結合思想為指導,借助圖形思考,可以使各集合間的關(guān)系直觀(guān)明了,使抽象的集合運算建立在直觀(guān)的基礎上,使解題思路清晰明朗,直觀(guān)簡(jiǎn)捷,有利于問(wèn)題的解決。
第三,指導學(xué)生理解并掌握自然語(yǔ)言、符號語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準確地進(jìn)行語(yǔ)言轉換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。
第四,集合問(wèn)題涉及到的其他內容,遇到了講透,不拓展。
【小學(xué)趣味運動(dòng)會(huì )作文】相關(guān)文章:
小學(xué)趣味運動(dòng)會(huì )作文03-10
趣味運動(dòng)會(huì )小學(xué)作文(精選24篇)05-16
趣味運動(dòng)會(huì )小學(xué)作文(精選29篇)04-25
精選小學(xué)趣味運動(dòng)會(huì )作文21篇11-28
趣味運動(dòng)會(huì )的小學(xué)作文(精選34篇)04-07
趣味運動(dòng)會(huì )小學(xué)作文(15篇)02-28
趣味運動(dòng)會(huì )小學(xué)作文15篇12-14
【精選】小學(xué)趣味運動(dòng)會(huì )作文20篇11-18
趣味運動(dòng)會(huì )作文有趣范文《趣味運動(dòng)會(huì )》07-19
趣味運動(dòng)會(huì )作文09-17