高中數學(xué)教學(xué)設計
作為一無(wú)名無(wú)私奉獻的教育工作者,時(shí)常需要準備好教學(xué)設計,教學(xué)設計把教學(xué)各要素看成一個(gè)系統,分析教學(xué)問(wèn)題和需求,確立解決的程序綱要,使教學(xué)效果最優(yōu)化。那么寫(xiě)教學(xué)設計需要注意哪些問(wèn)題呢?下面是小編精心整理的高中數學(xué)教學(xué)設計,歡迎閱讀,希望大家能夠喜歡。

高中數學(xué)教學(xué)設計1
函數的奇偶性
函數的奇偶性是函數的重要性質(zhì),是對函數概念的深化.它把自變量取相反數時(shí)函數值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數的圖像關(guān)于y軸對稱(chēng),奇函數的圖像關(guān)于坐標原點(diǎn)成中心對稱(chēng).這樣,就從數、形兩個(gè)角度對函數的奇偶性進(jìn)行了定量和定性的分析.教材首先通過(guò)對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實(shí)例.最后,為加強前后聯(lián)系,從各個(gè)角度研究函數的性質(zhì),講清了奇偶性和單調性的聯(lián)系.這節課的'重點(diǎn)是函數奇偶性的定義,難點(diǎn)是根據定義判斷函數的奇偶性.
教學(xué)目標:
1.通過(guò)具體函數,讓學(xué)生經(jīng)歷奇函數、偶函數定義的討論,體驗數學(xué)概念的建立過(guò)程,培養其抽象的概括能力.
2.理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡(jiǎn)單函數的奇偶性.
3.在經(jīng)歷概念形成的過(guò)程中,培養學(xué)生歸納、抽象概括能力,體驗數學(xué)既是抽象的又是具體的任務(wù)分析
這節內容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習過(guò)具有奇偶性的具體的函數:正比例函數y=kx,反比例函數,(k≠0),二次函數y=ax,(a≠0),故可在此基礎上,引入奇、偶函數的概念,以便于學(xué)生理解.在引入概念時(shí)始終結合具體函數的圖像,以增加直觀(guān)性,這樣更符合學(xué)生的認知規律,同時(shí)為闡述奇、偶函數的幾何特征埋下了伏筆.對于概念可從代數特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數、偶函數的定義域是關(guān)于原點(diǎn)對稱(chēng)的非空數集;對于在有定義的奇函數y=f(x),一定有f(0)=0;既是奇函數,又是偶函數的函數有f(x)=0,x∈R.在此基礎上,讓學(xué)生了解:奇函數、偶函數的矛盾概念———非奇非偶函數.關(guān)于單調性與奇偶性關(guān)系,引導學(xué)生拓展延伸,可以取得理想效果.
一、問(wèn)題情景
1.觀(guān)察如下兩圖,思考并討論以下問(wèn)題:
(1)這兩個(gè)函數圖像有什么共同特征?
(2)相應的兩個(gè)函數值對應表是如何體現這些特征的?可以看到兩個(gè)函數的圖像都關(guān)于y軸對稱(chēng).從函數值對應表可以看到,當自變量x取一對相反數時(shí),相應的兩個(gè)函數值相同.
對于函數f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對于R內任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱(chēng)函數y=x2為偶函數.
2.觀(guān)察函數f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數值對應表,然后說(shuō)出這兩個(gè)函數有什么共同特征.
22可以看到兩個(gè)函數的圖像都關(guān)于原點(diǎn)對稱(chēng).函數圖像的這個(gè)特征,反映在解析式上就是:當自變量x取一對相反數時(shí),相應的函數值f(x)也是一對相反數,即對任一x∈R都有f(-x)=-f(x).此時(shí),稱(chēng)函數y=f(x)為奇函數.
二、建立模型
由上面的分析討論引導學(xué)生建立奇函數、偶函數的定義
1.奇、偶函數的定義
如果對于函數f(x)的定義域內任意一個(gè)x,都有f(-x)=-f(x),那么函數f(x)就叫作奇函數.如果對于函數f(x)的定義域內任意一個(gè)x,都有f(-x)=f(x),那么函數f(x)就叫作偶函數.
2.提出問(wèn)題,組織學(xué)生討論
(1)如果定義在R上的函數f(x)滿(mǎn)足f(-2)=f(2),那么f(x)是偶函數嗎? (f(x)不一定是偶函數)
(2)奇、偶函數的圖像有什么特征?
(奇、偶函數的圖像分別關(guān)于原點(diǎn)、y軸對稱(chēng)) (3)奇、偶函數的定義域有什么特征? (奇、偶函數的定義域關(guān)于原點(diǎn)對稱(chēng))
三、解釋?xiě)肹例題]
1.判斷下列函數的奇偶性.
注:①規范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數f(x)是奇函數,當x>0時(shí),f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函數,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)當x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數f(x)是偶函數,且在(-∞,0)上是減函數,判斷f(x)在(0,+∞)上是增函數,還是減函數,并證明你的結論.
解:先結合圖像特征:偶函數的圖像關(guān)于y軸對稱(chēng),猜想f(x)在(0,+∞)上是增函數,證明如下:
任取x1>x2>0,則-x1<-x2<0.
∵f(x)在(-∞,0)上是減函數,∴f(-x1)>f(-x2).又f(x)是偶函數,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函數.
思考:奇函數或偶函數在關(guān)于原點(diǎn)對稱(chēng)的兩個(gè)區間上的單調性有何關(guān)系?
[練習]
1.已知:函數f(x)是奇函數,在[a,b]上是增函數(b>a>0),問(wèn)f(x)在[-b,-a]上的單調性如何.
2. f(x)=-x3|x|的大致圖像可能是()
3.函數f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿(mǎn)足什么條件時(shí),(1)函數f(x)是偶函數.(2)函數f(x)是奇函數. 4.設f(x),g(x)分別是R上的奇函數和偶函數,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函數,又是偶函數的函數嗎?若有,有多少個(gè)? 2.設f(x),g(x)分別是R上的奇函數,偶函數,試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數.
4.一個(gè)定義在R上的函數,是否都可以表示為一個(gè)奇函數與一個(gè)偶函數的和的形式?
高中數學(xué)教學(xué)設計2
函數的奇偶性是函數的重要性質(zhì),是對函數概念的深化。它把自變量取相反數時(shí)函數值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數的圖像關(guān)于y軸對稱(chēng),奇函數的圖像關(guān)于坐標原點(diǎn)成中心對稱(chēng)。這樣,就從數、形兩個(gè)角度對函數的奇偶性進(jìn)行了定量和定性的分析。
教材首先通過(guò)對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義。然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實(shí)例。最后,為加強前后聯(lián)系,從各個(gè)角度研究函數的性質(zhì),講清了奇偶性和單調性的聯(lián)系。這節課的重點(diǎn)是函數奇偶性的定義,難點(diǎn)是根據定義判斷函數的奇偶性。
教學(xué)目標
1、通過(guò)具體函數,讓學(xué)生經(jīng)歷奇函數、偶函數定義的討論,體驗數學(xué)概念的建立過(guò)程,培養其抽象的概括能力。
2、理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡(jiǎn)單函數的奇偶性。
3、在經(jīng)歷概念形成的過(guò)程中,培養學(xué)生歸納、抽象概括能力,體驗數學(xué)既是抽象的又是具體的。
任務(wù)分析
這節內容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習過(guò)具有奇偶性的具體的函數:正比例函數y=kx,反比例函數 ,k≠0,二次函數y=ax,a≠0,故可在此基礎上,引入奇、偶函數的概念,以便于學(xué)生理解。在引入概念時(shí)始終結合具體函數的圖像,以增加直觀(guān)性,這樣更符合學(xué)生的認知規律,同時(shí)為闡述奇、偶函數的幾何特征埋下了伏筆。
對于概念可從代數特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數、偶函數的定義域是關(guān)于原點(diǎn)對稱(chēng)的非空數集;對于在有定義的奇函數y=fx,一定有f0=0既是奇函數,又是偶函數的函數有fx=0,x∈R在此基礎上,讓學(xué)生了解:奇函數、偶函數的矛盾概念———非奇非偶函數。關(guān)于單調性與奇偶性關(guān)系,引導學(xué)生拓展延伸,可以取得理想效果。
教學(xué)設計
一、問(wèn)題情景
1、觀(guān)察如下兩圖,思考并討論以下問(wèn)題:
。1)這兩個(gè)函數圖像有什么共同特征?
。2)相應的兩個(gè)函數值對應表是如何體現這些特征的?
可以看到兩個(gè)函數的圖像都關(guān)于y軸對稱(chēng)。
從函數值對應表可以看到,當自變量x取一對相反數時(shí),相應的兩個(gè)函數值相同。
對于函數fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事實(shí)上,對于R內任意的一個(gè)x,都有fx=x2=x2=fx。此時(shí),稱(chēng)函數y=x2為偶函數。
2、觀(guān)察函數fx=x和fx= 的圖像,并完成下面的兩個(gè)函數值對應表,然后說(shuō)出這兩個(gè)函數有什么共同特征。
可以看到兩個(gè)函數的圖像都關(guān)于原點(diǎn)對稱(chēng)。函數圖像的這個(gè)特征,反映在解析式上就是:當自變量x取一對相反數時(shí),相應的函數值fx也是一對相反數,即對任一x∈R都有fx=fx。此時(shí),稱(chēng)函數y=fx為奇函數。
二、建立模型
由上面的分析討論引導學(xué)生建立奇函數、偶函數的.定義
1奇、偶函數的定義
如果對于函數fx的定義域內任意一個(gè)x,都有fx=fx,那么函數fx就叫作奇函數。如果對于函數fx的定義域內任意一個(gè)x,都有fx=fx,那么函數fx就叫作偶函數。
2、提出問(wèn)題,組織學(xué)生討論
。1)如果定義在R上的函數fx滿(mǎn)足f2=f2,那么fx是偶函數嗎? fx不一定是偶函數
。2)奇、偶函數的圖像有什么特征?
。ㄆ、偶函數的圖像分別關(guān)于原點(diǎn)、y軸對稱(chēng))
3奇、偶函數的定義域有什么特征? (奇、偶函數的定義域關(guān)于原點(diǎn)對稱(chēng))
三、解釋?xiě)?/p>
[例 題]
1、判斷下列函數的奇偶性。
注:①規范解題格式;
、趯τ5要注意定義域x∈1,1]。
2、已知:定義在R上的函數fx是奇函數,當x>0時(shí),fx=x1+x,求fx的表達式。
解:1任取x<0,則x>0,∴fx=x1x,
而fx是奇函數,∴fx=fx!鄁x=x1x。
。2)當x=0時(shí),f0=f0,∴f0=f0,故f0=0
3、已知:函數f(x是偶函數,且在∞,0上是減函數,判斷fx在0,+∞)上是增函數,還是減函數,并證明你的結論。
解:先結合圖像特征:偶函數的圖像關(guān)于y軸對稱(chēng),猜想f(x在0,+∞)上是增函數,
證明如下:
任取x1>x2>0,則x1 ∵fx在∞,0上是減函數,∴fx1>fx2。 又fx是偶函數,∴fx1>fx2。 ∴f(x在0,+∞)上是增函數。 思考:奇函數或偶函數在關(guān)于原點(diǎn)對稱(chēng)的兩個(gè)區間上的單調性有何關(guān)系? [練 習] 1、已知:函數fx是奇函數,在[a,b]上是增函數b>a>0,問(wèn)fx在[b,a]上的單調性如何。 2fx=x3|x|的大致圖像可能是 3、函數fx=ax2+bx+c,a,b,c∈R,當a,b,c滿(mǎn)足什么條件時(shí),1函數fx是偶函數。2函數fx是奇函數。 4設fx,gx分別是R上的奇函數和偶函數,并且fx+gx=xx+1,求fx,gx的解析式。 四、拓展延伸 1、有既是奇函數,又是偶函數的函數嗎?若有,有多少個(gè)? 2設fx,gx分別是R上的奇函數,偶函數,試研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。 3、已知a∈R,fx=a ,試確定a的值,使fx是奇函數。 4、一個(gè)定義在R上的函數,是否都可以表示為一個(gè)奇函數與一個(gè)偶函數的和的形式? 教學(xué)準備 教學(xué)目標 1、掌握平面向量的數量積及其幾何意義; 2、掌握平面向量數量積的重要性質(zhì)及運算律; 3、了解用平面向量的數量積可以處理垂直的問(wèn)題; 4、掌握向量垂直的條件。 教學(xué)重難點(diǎn) 教學(xué)重點(diǎn):平面向量的數量積定義 教學(xué)難點(diǎn):平面向量數量積的定義及運算律的理解和平面向量數量積的應用 教學(xué)過(guò)程 1、平面向量數量積(內積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ, 則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。 并規定0向量與任何向量的數量積為0。 ×探究:1、向量數量積是一個(gè)向量還是一個(gè)數量?它的符號什么時(shí)候為正?什么時(shí)候為負? 2、兩個(gè)向量的數量積與實(shí)數乘向量的`積有什么區別? 。1)兩個(gè)向量的數量積是一個(gè)實(shí)數,不是向量,符號由cosq的符號所決定。 。2)兩個(gè)向量的數量積稱(chēng)為內積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數量的積,書(shū)寫(xiě)時(shí)要嚴格區分。符號“· ”在向量運算中不是乘號,既不能省略,也不能用“×”代替。 。3)在實(shí)數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0。因為其中cosq有可能為0。 教學(xué)目標 。1)理解四種命題的概念; 。2)理解四種命題之間的相互關(guān)系,能由原命題寫(xiě)出其他三種形式; 。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系; 。4)初步掌握反證法的概念及反證法證題的基本步驟; 。5)通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力; 。6)通過(guò)對四種命題的存在性和相對性的認識,進(jìn)行辯證唯物主義觀(guān)點(diǎn)教育; 。7)培養學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力. 教學(xué)重點(diǎn)和難點(diǎn) 重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運用. 教學(xué)過(guò)程設計 第一課時(shí):四種命題 一、導入新課 【練習】1.把下列命題改寫(xiě)成“若p則q”的形式: 。╨)同位角相等,兩直線(xiàn)平行; 。2)正方形的四條邊相等. 2.什么叫互逆命題?上述命題的逆命題是什么? 將命題寫(xiě)成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結論. 如果第一個(gè)命題的條件是第二個(gè)命題的結論,且第一個(gè)命題的結論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題. 上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線(xiàn)平行,則同位角相等”. 值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題. 3.原命題真,逆命題一定真嗎? “同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真. 學(xué)生活動(dòng): 口答: 。1)若同位角相等,則兩直線(xiàn)平行; 。2)若一個(gè)四邊形是正方形,則它的'四條邊相等. 設計意圖: 通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎. 二、新課 【設問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題? 【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線(xiàn)不平行”,這個(gè)命題叫原命題的否命題. 【提問(wèn)】你能由原命題“正方形的四條邊相等”構成它的否命題嗎? 學(xué)生活動(dòng): 口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等. 教師活動(dòng): 【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的條件的否定和結論的否定,這樣的兩個(gè)命題叫做互否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題. 若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定. 【板書(shū)】原命題:若p則q; 否命題:若┐p則q┐. 【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明? 學(xué)生活動(dòng): 講論后回答: 原命題“同位角相等,兩直線(xiàn)平行”真,它的否命題“同位角不相等,兩直線(xiàn)不平行”不真. 原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真. 由此可以得原命題真,它的否命題不一定真. 設計意圖: 通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)習的積極性. 教師活動(dòng): 【提問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題? 學(xué)生活動(dòng): 討論后回答 【總結】可以將這個(gè)命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線(xiàn)不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題. 教師活動(dòng): 【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么? 學(xué)生活動(dòng): 口答:若一個(gè)四邊形的四條邊不相等,則不是正方形. 教師活動(dòng): 【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的結論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題. 原命題是“若p則q”,則逆否命題為“若┐q則┐p. 【提問(wèn)】“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真? 學(xué)生活動(dòng): 討論后回答 這兩個(gè)逆否命題都真. 原命題真,逆否命題也真. 教師活動(dòng): 【提問(wèn)】原命題的真假與其他三種命題的真 假有什么關(guān)系?舉例加以說(shuō)明? 【總結】1.原命題為真,它的逆命題不一定為真. 2.原命題為真,它的否命題不一定為真. 3.原命題為真,它的逆否命題一定為真. 設計意圖: 通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)的積極性. 教師活動(dòng): 三、課堂練習 1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫(xiě)在方框內? 學(xué)生活動(dòng):筆答 教師活動(dòng): 2.根據上圖所給出的箭頭,寫(xiě)出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明? 學(xué)生活動(dòng):討論后回答 設計意圖: 通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系. 教師活動(dòng): 略。 一、教材分析 數學(xué)歸納法是一種重要的數學(xué)證明方法,在高中數學(xué)內容中占有重要的地位,其中體現的數學(xué)思想方法對學(xué)生進(jìn)一步學(xué)習數學(xué)、領(lǐng)悟數學(xué)思想至關(guān)重要。本課是數學(xué)歸納法的第一節課,前面學(xué)生對等差數列、數列求和、二項式定理等知識有較全面的把握和較深入的理解,初步掌握了由有限多個(gè)特殊事例得出一般結論的推理方法,即不完全歸納法,這是研究數學(xué)問(wèn)題,猜想或發(fā)現數學(xué)規律的重要手段。但是,由有限多個(gè)特殊事例得出的結論不一定正確,這種推理方法不能作為一種論證方法。因此,在不完全歸納法的基礎上,必須進(jìn)一步學(xué)習嚴謹的科學(xué)的論證方法——數學(xué)歸納法,這是促進(jìn)學(xué)生從有限思維發(fā)展到無(wú)限思維的一個(gè)重要環(huán)節,同時(shí)本節內容又是培養學(xué)生嚴密的推理能力、訓練學(xué)生的抽象思維能力、體驗數學(xué)內在美的好素材。 二、教學(xué)目標 學(xué)生通過(guò)數列等相關(guān)知識的學(xué)習,已經(jīng)基本掌握了不完全歸納法,已經(jīng)由一定的觀(guān)察、歸納、猜想能力。 根據教學(xué)內容特點(diǎn)和教學(xué)大綱,結合學(xué)生實(shí)際而制定以下教學(xué)目標: 1.知識目標 。1)了解由有限多個(gè)特殊事例得出的一般結論不一定正確。 。2)初步理解數學(xué)歸納法原理。 。3)能以遞推思想為指導,理解數學(xué)歸納法證明數學(xué)命題的兩個(gè)步驟一個(gè)結論。 。4)會(huì )用數學(xué)歸納法證明與正整數相關(guān)的簡(jiǎn)單的恒等式。 2.能力目標 。1)通過(guò)對數學(xué)歸納法的學(xué)習,使學(xué)生初步掌握觀(guān)察、歸納、猜想、分析能力和嚴密的邏輯推理能力。 。2)在學(xué)習中培養學(xué)生大膽猜想,小心求證的辨證思維素質(zhì)以及發(fā)現問(wèn)題、提出問(wèn)題的意識和數學(xué)交流的能力。 3.情感目標 。1)通過(guò)對數學(xué)歸納法原理的探究,親歷知識的構建過(guò)程,領(lǐng)悟其中所蘊含的數學(xué)思想和辨正唯物主義觀(guān)點(diǎn)。 。2)體驗探索中挫折的艱辛和成功的快樂(lè ),感悟數學(xué)的內在美,激發(fā)學(xué)生學(xué)習熱情,使學(xué)生喜歡數學(xué)。 。3)學(xué)生通過(guò)置疑與探究,初步形成正確的數學(xué)觀(guān),創(chuàng )新意識和嚴謹的科學(xué)精神。 三、教學(xué)重點(diǎn)與難點(diǎn) 1.教學(xué)重點(diǎn) 借助具體實(shí)例了解數學(xué)歸納法的基本思想,掌握它的基本步驟,運用它證明一些與正整數有關(guān)的簡(jiǎn)單恒等式,特別要注意遞推步驟中歸納假設的運用和恒等變換的運用。 2.教學(xué)難點(diǎn) 。1)如何理解數學(xué)歸納法證題的嚴密性和有效性。 。2)遞推步驟中如何利用歸納假設,即如何利用假設證明當時(shí)結論正確。 四、教學(xué)方法 本節課采用交往性教學(xué)方法,以學(xué)生及其發(fā)展為本,一切從學(xué)生出發(fā)。在教師組織啟發(fā)下,通過(guò)創(chuàng )設問(wèn)題情境,激發(fā)學(xué)習欲望。師生之間、學(xué)生之間共同探究多米諾骨牌倒下的原理,并類(lèi)比多米諾骨牌倒下的原理,探究數學(xué)歸納法的原理、步驟;培養學(xué)生歸納、類(lèi)比推理的能力,進(jìn)而應用數學(xué)歸納法,證明一些與正整數n有關(guān)的簡(jiǎn)單數學(xué)命題;提高學(xué)生的應用能力,分析問(wèn)題、解決問(wèn)題的能力。既重視教師的組織引導,又強調學(xué)生的主體性、主動(dòng)性、交流性和合作性。 五、教學(xué)過(guò)程 。ㄒ唬﹦(chuàng )設情境,提出問(wèn)題 情境一:根據觀(guān)察某學(xué)校第一個(gè)到校的女同學(xué),第二個(gè)到校的也是女同學(xué),第三個(gè)到校的還是女同學(xué),于是得出:這所學(xué)校的學(xué)生全部是女同學(xué)。 情境二:平面內三角形內角和是,四邊形內角和是,五邊形內角和是,于是得出:凸邊形內角和是。 情境三:數列的通項公式為,可以求得,,,,于是猜想出數列的通項公式為。 結論:運用有限多個(gè)特殊事例得出的一般性結論,即不完全歸納法不一定正確。因此它不 能作為一種論證的方法。 提出問(wèn)題:如何尋找一個(gè)科學(xué)有效的`方法證明結論的正確性呢?我們本節課所要學(xué)習的數 學(xué)歸納法就是解決這一問(wèn)題的方法之一。 。ǘ⿲(shí)驗演示,探索解決問(wèn)題的方法 1.幾何畫(huà)板演示動(dòng)畫(huà)多米諾骨牌游戲,師生共同探討:要讓這些骨牌全部倒下,必 須具備那些條件呢?(學(xué)生可以討論,加以教師點(diǎn)撥) 、俚谝粔K骨牌必須倒下。 、趦蓧K連續的骨牌,當前一塊倒下,后面一塊必須倒下。 。▎l(fā)學(xué)生轉換成數學(xué)符號語(yǔ)言:當第塊倒下,則第塊必須倒下) 教師總結:數學(xué)歸納法的原理就如同多米諾骨牌一樣。 2.學(xué)生類(lèi)比多米諾骨牌原理,探究出證明有關(guān)正整數命題的方法,從而導出本課的重心:數學(xué)歸納法的原理及其證明的兩個(gè)步驟。(給學(xué)生思考的時(shí)間,教師提問(wèn),學(xué)生回答,教師補充完善,對學(xué)生的回答給予肯定和鼓勵) 數學(xué)歸納法公理:(板書(shū)) 。1)(遞推基礎)當取第一個(gè)值(例如等)結論正確; 。2)(遞推歸納)假設當時(shí)結論正確;(歸納假設) 證明當時(shí)結論也正確。(歸納證明) 那么,命題對于從開(kāi)始的所有正整數都成立。 教師總結:步驟(1)是數學(xué)歸納法的基礎,步驟(2)建立了遞推過(guò)程,兩者缺一不 可,這就是數學(xué)歸納法。 。ㄈ┻w移應用,理解升華 例1:用數學(xué)歸納法證明:等差數列中,為首項,為公差,則通項公式為.① 選題意圖:讓學(xué)生注意:①數學(xué)歸納法是一種完全歸納的證明方法,它適用于與正整數有關(guān)的問(wèn)題; 、趦蓚(gè)步驟,一個(gè)結論缺一不可,否則結論不成立; 、墼谧C明遞推步驟時(shí),必須使用歸納假設,必須進(jìn)行恒等變換。 此時(shí)學(xué)生心中已有一個(gè)初步的證明模式,教師應該規范板書(shū),給學(xué)生提供一個(gè)示范。 證明:(1)當時(shí),等式左邊,等式右邊,等式①成立. 。2)假設當時(shí)等式①成立,即有 那么,當時(shí),有所以當時(shí)等式①也成立。 根據(1)和(2),可知對任何,等式①都成立。 例2:用數學(xué)歸納法證明:當時(shí) 選題意圖:通過(guò)師生共同活動(dòng),使學(xué)生進(jìn)一步熟悉數學(xué)歸納法證題的兩個(gè)步驟和一個(gè)結論。 例3:用數學(xué)歸納法證明:當時(shí) 選題意圖:①進(jìn)一步讓學(xué)生理解數學(xué)歸納法的嚴密性和合理性,從而從感性認識上升為理性認識; 、谡莆諒牡綍r(shí)等式左邊的變化情況,合理的進(jìn)行添項、拆項、合并項等。 。ㄋ模┓答伨毩,鞏固提高 課堂練習:用數學(xué)歸納法證明:當時(shí) 。ň毩曌寣W(xué)生獨立完成,上黑板板演,要求書(shū)寫(xiě)工整,步驟完整,表述清楚,如果發(fā)現學(xué) 生證明過(guò)程中的錯誤,教師及時(shí)糾正、剖析,同時(shí)對學(xué)生板演好的方面予以肯定和鼓勵。) 教師總結:利用數學(xué)歸納法證明和正整數相關(guān)的命題時(shí),要注意以下三句話(huà):遞推基礎不 可少,歸納假設要用到,結論寫(xiě)明莫忘掉。 。ㄎ澹┓此伎偨Y 學(xué)生思考后,教師提問(wèn),讓同學(xué)相互補充完善,教師最后總結,這一環(huán)節可以培養學(xué) 生抽象、歸納、概括、總結的能力,同時(shí)教師也可以及時(shí)了解學(xué)生的掌握情況,以便彌補和及時(shí)調整下節課的教學(xué)方向。 小結:(1)歸納法是一種由特殊到一般的推理方法,分完全歸納法和不完全歸納法兩種, 而不完全歸納法得出的結論不具有可靠性,必須用數學(xué)歸納法進(jìn)行嚴格證明; 。2)數學(xué)歸納法作為一種證明方法,用于證明一些與正整數n有關(guān)數學(xué)命題,它的基本思想是遞推思想,它的證明過(guò)程必須是兩步,最后還有結論,缺一不可; 。3)遞推歸納時(shí)從到,必須用到歸納假設,并進(jìn)行適當的恒等變換。 。┳鳂I(yè)布置 選修2-2習題2.3第1題第2題 教學(xué)準備 教學(xué)目標 解三角形及應用舉例 教學(xué)重難點(diǎn) 解三角形及應用舉例 教學(xué)過(guò)程 一.基礎知識精講 掌握三角形有關(guān)的定理 利用正弦定理,可以解決以下兩類(lèi)問(wèn)題: (1)已知兩角和任一邊,求其他兩邊和一角; (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類(lèi)問(wèn)題: (1)已知三邊,求三角; (2)已知兩邊和它們的夾角,求第三邊和其他兩角。 掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數問(wèn)題. 二.問(wèn)題討論 思維點(diǎn)撥:已知兩邊和其中一邊的對角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論. 思維點(diǎn)撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時(shí),要利用三角函數的有關(guān)性質(zhì). 例6:在某海濱城市附近海面有一臺風(fēng),據檢測,當前臺風(fēng)中心位于城市O(如圖)的東偏南方向300 km的'海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺風(fēng)侵襲的范圍為圓形區域,當前半徑為60 km,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺風(fēng)的侵襲。 一. 小結: 1.利用正弦定理,可以解決以下兩類(lèi)問(wèn)題: (1)已知兩角和任一邊,求其他兩邊和一角; (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角); 2.利用余弦定理,可以解決以下兩類(lèi)問(wèn)題: (1)已知三邊,求三角; (2)已知兩邊和它們的夾角,求第三邊和其他兩角。 3.邊角互化是解三角形問(wèn)題常用的手段. 三.作業(yè):P80闖關(guān)訓練 一、單元教學(xué)內容 。ǎ保┧惴ǖ幕靖拍 。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環(huán)結構 。ǎ常┧惴ǖ幕菊Z(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句 二、單元教學(xué)內容分析 算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力 三、單元教學(xué)課時(shí)安排: 。、算法的基本概念 3課時(shí) 。、程序框圖與算法的基本結構 5課時(shí) 。、算法的基本語(yǔ)句 2課時(shí) 四、單元教學(xué)目標分析 。、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義 。、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。 。、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的`過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。 。、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。 五、單元教學(xué)重點(diǎn)與難點(diǎn)分析 。、重點(diǎn) 。ǎ保├斫馑惴ǖ暮x (2)掌握算法的基本結構 (3)會(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題 。、難點(diǎn) 。ǎ保┏绦蚩驁D (2)變量與賦值 (3)循環(huán)結構 (4)算法設計 六、單元總體教學(xué)方法 本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。 七、單元展開(kāi)方式與特點(diǎn) 。、展開(kāi)方式 自然語(yǔ)言→程序框圖→算法語(yǔ)句 。、特點(diǎn) 。ǎ保┞菪仙 分層遞進(jìn) (2)整合滲透 前呼后應 (3)三線(xiàn)合 一 橫向貫通 (4)彈性處理 多樣選擇 八、單元教學(xué)過(guò)程分析 1. 算法基本概念教學(xué)過(guò)程分析 對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。 2.算法的流程圖教學(xué)過(guò)程分析 對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。 3. 基本算法語(yǔ)句教學(xué)過(guò)程分析 經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法, 4. 通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。 九、單元評價(jià)設想 1.重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià) 關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。 2.正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能 關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法 一、課題: 人教版全日制普通高級中學(xué)教科書(shū)數學(xué)第一冊(上)《2.7對數》 二、指導思想與理論依據: 《數學(xué)課程標準》指出:高中數學(xué)課程應講清一些基本內容的實(shí)際背景和應用價(jià)值,開(kāi)展“數學(xué)建!钡膶W(xué)習活動(dòng),把數學(xué)的應用自然地融合在平常的教學(xué)中。任何一個(gè)數學(xué)概念的引入,總有它的現實(shí)或數學(xué)理論發(fā)展的需要。都應強調它的現實(shí)背景、數學(xué)理論發(fā)展背景或數學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內容顯得自然和親切,讓學(xué)生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學(xué)生認識數學(xué)內容的實(shí)際背景和應用的價(jià)值。在教學(xué)設計時(shí),既要關(guān)注學(xué)生在數學(xué)情感態(tài)度和科學(xué)價(jià)值觀(guān)方面的發(fā)展,也要幫助學(xué)生理解和掌握數學(xué)基礎知識和基本技能,發(fā)展能力。在課程實(shí)施中,應結合教學(xué)內容介紹一些對數學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數學(xué)在人類(lèi)社會(huì )進(jìn)步、人類(lèi)文化建設中的作用,同時(shí)反映社會(huì )發(fā)展對數學(xué)發(fā)展的促進(jìn)作用。 三、教材分析: 本節內容主要學(xué)習對數的概念及其對數式與指數式的互化。它屬于函數領(lǐng)域的知識。而對數的概念是對數函數部分教學(xué)中的核心概念之一,而函數的思想方法貫穿在高中數學(xué)教學(xué)的.始終。通過(guò)對數的學(xué)習,可以解決數學(xué)中知道底數和冪值求指數的問(wèn)題,以及對數函數的相關(guān)問(wèn)題。 四、學(xué)情分析: 在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學(xué)生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習指數的基礎上學(xué)習對數的概念是水到渠成的事。 五、教學(xué)目標: (一)教學(xué)知識點(diǎn): 1.對數的概念。 2.對數式與指數式的互化。 (二)能力目標: 1.理解對數的概念。 2.能夠進(jìn)行對數式與指數式的互化。 (三)德育滲透目標: 1.認識事物之間的相互聯(lián)系與相互轉化, 2.用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題。 六、教學(xué)重點(diǎn)與難點(diǎn): 重點(diǎn)是對數定義,難點(diǎn)是對數概念的理解。 七、教學(xué)方法: 講練結合法八、教學(xué)流程: 問(wèn)題情景(復習引入)——實(shí)例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質(zhì)、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結) 八、教學(xué)反思: 對本節內容在進(jìn)行教學(xué)設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學(xué)中,對于一些較簡(jiǎn)單的內容,應放手讓學(xué)生多一些探究與合作。隨著(zhù)教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內容等教學(xué)因素,都在不斷更新,作為數學(xué)教師要更新教學(xué)觀(guān)念,從學(xué)生的全面發(fā)展來(lái)設計課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標準》的要求。 對于本教學(xué)設計,時(shí)間倉促,不足之處在所難免,期待與各位同仁交流。 一、教學(xué)內容分析: 本節教材選自人教a版數學(xué)必修②第二章第一節課,本節內容在立幾學(xué)習中起著(zhù)承上啟下的作用,具有重要的意義與地位。本節課是在前面已學(xué)空間點(diǎn)、線(xiàn)、面位置關(guān)系的基礎作為學(xué)習的出發(fā)點(diǎn),結合有關(guān)的實(shí)物模型,通過(guò)直觀(guān)感知、操作確認(合情推理,不要求證明)歸納出直線(xiàn)與平面平行的判定定理。本節課的學(xué)習對培養學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線(xiàn)線(xiàn)平行、面面平行的判定的學(xué)習作用重大。 二、學(xué)生學(xué)習情況分析: 任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習興趣較高,但學(xué)習立幾所具備的語(yǔ)言表達及空間感與空間想象能力相對不足,學(xué)習方面有一定困難。 三、設計思想 本節課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過(guò)直觀(guān)感知,操作確認,合情推理,歸納出直線(xiàn)與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學(xué)生在觀(guān)察分析、自主探索、合作交流的過(guò)程中,揭示直線(xiàn)與平面平行的判定、理解數學(xué)的概念,領(lǐng)會(huì )數學(xué)的思想方法,養成積極主動(dòng)、勇于探索、自主學(xué)習的學(xué)習方式,發(fā)展學(xué)生的空間觀(guān)念和空間想象力,提高學(xué)生的數學(xué)邏輯思維能力。 四、教學(xué)目標 通過(guò)直觀(guān)感知——觀(guān)察——操作確認的認識方法理解并掌握直線(xiàn)與平面平行的判定定理,掌握直線(xiàn)與平面平行的畫(huà)法并能準確使用數學(xué)符號語(yǔ)言、文字語(yǔ)言表述判定定理。培養學(xué)生觀(guān)察、探究、發(fā)現的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀(guān)察、探究、發(fā)現中學(xué)習,在自主合作、交流中學(xué)習,體驗學(xué)習的樂(lè )趣,增強自信心,樹(shù)立積極的學(xué)習態(tài)度,提高學(xué)習的自我效能感。 五、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應用及立幾空間感、空間觀(guān)念的形成與邏輯思維能力的培養。 六、教學(xué)過(guò)程設計 (一)知識準備、新課引入 提問(wèn)1:根據公共點(diǎn)的情況,空間中直線(xiàn)a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a?? 提問(wèn)2:根據直線(xiàn)與平面平行的定義(沒(méi)有公共點(diǎn))來(lái)判定直線(xiàn)與平面平行你認為方便嗎?談?wù)勀愕目捶,并指出是否有別的判定途徑。 [設計意圖:通過(guò)提問(wèn),學(xué)生復習并歸納空間直線(xiàn)與平面位置關(guān)系引入本節課題,并為探尋直線(xiàn)與平面平行判定定理作好準備。] (二)判定定理的探求過(guò)程 1、直觀(guān)感知 提問(wèn):根據同學(xué)們日常生活的觀(guān)察,你們能感知到并舉出直線(xiàn)與平面平行的具體事例嗎? 生1:例舉日光燈與天花板,樹(shù)立的電線(xiàn)桿與墻面。 生2:門(mén)轉動(dòng)到離開(kāi)門(mén)框的任何位置時(shí),門(mén)的邊緣線(xiàn)始終與門(mén)框所在的平面平行(由學(xué)生到教室門(mén)前作演示),然后教師用多媒體動(dòng)畫(huà)演示。 [學(xué)情預設:此處的預設與生成應當是很自然的,但老師要預見(jiàn)到可能出現的情況如電線(xiàn)桿與墻面可能共面的情形及門(mén)要離開(kāi)門(mén)框的位置等情形。] 2、動(dòng)手實(shí)踐 教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動(dòng),觀(guān)察另一邊與桌面的位置給人以平行的感覺(jué),而當把直角腰放在桌面上并轉動(dòng),觀(guān)察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會(huì )感覺(jué)到老師(視為線(xiàn))與四周墻面平行,如老師向前或后傾斜則感覺(jué)老師(視為線(xiàn))與左、右墻面平行,如老師向左、右傾斜,則感覺(jué)老師(視為線(xiàn))與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。 [設計意圖:設置這樣動(dòng)手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線(xiàn)面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內心中,學(xué)自己身邊的`數學(xué),領(lǐng)悟空間觀(guān)念與空間圖形性質(zhì)。] 3、探究思考 (1)上述演示的直線(xiàn)與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過(guò)觀(guān)察感知發(fā)現直線(xiàn)與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線(xiàn)②我們把直線(xiàn)與平面相交或平行的位置關(guān)系統稱(chēng)為直線(xiàn)在平面外,用符號表示為平面內一條直線(xiàn)③這兩條直線(xiàn)平行 (2)如果平面外的直線(xiàn)a與平面?內的一條直線(xiàn)b平行,那么直線(xiàn)a與平面?平行嗎? 4、歸納確認:(多媒體幻燈片演示) 直線(xiàn)和平面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)和這個(gè)平面平行。 簡(jiǎn)單概括:(內外)線(xiàn)線(xiàn)平行?線(xiàn)面平行a符號表示:ba||? a||b?? 溫馨提示: 作用:判定或證明線(xiàn)面平行。 關(guān)鍵:在平面內找(或作)出一條直線(xiàn)與面外的直線(xiàn)平行。 思想:空間問(wèn)題轉化為平面問(wèn)題 (三)定理運用,問(wèn)題探究(多媒體幻燈片演示) 1、想一想: (1)判斷下列命題的真假?說(shuō)明理由: 、偃绻粭l直線(xiàn)不在平面內,則這條直線(xiàn)就與平面平行() 、谶^(guò)直線(xiàn)外一點(diǎn)可以作無(wú)數個(gè)平面與這條直線(xiàn)平行( ) 、垡恢本(xiàn)上有二個(gè)點(diǎn)到平面的距離相等,則這條直線(xiàn)與平面平行( ) (2)若直線(xiàn)a與平面?內無(wú)數條直線(xiàn)平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預設:設計這組問(wèn)題目的是強調定理中三個(gè)條件的重要性,同時(shí)預設(1)中的③學(xué)生可能認為正確的,這樣就無(wú)法達到老師的預設與生成的目的,這時(shí)教師要引導學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過(guò)泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強,能按老師的要求生成正確的結果則就由個(gè)別學(xué)生進(jìn)行演示。] 2、作一作: 設a、b是二異面直線(xiàn),則過(guò)a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請畫(huà)出平面,不存在說(shuō)明理由? 先由學(xué)生討論交流,教師提問(wèn),然后教師總結,并用準備好的羊毛針、鐵線(xiàn)、泡沫板等演示平面的形成過(guò)程,最后借多媒體展示作圖的動(dòng)畫(huà)過(guò)程。 [設計意圖:這是一道動(dòng)手操作的問(wèn)題,不僅是為了拓展加深對定理的認識,更重要的是培養學(xué)生空間感與思維的嚴謹性。] 3、證一證: 例1(見(jiàn)課本60頁(yè)例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。 變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結ef、fg、gh、he、ac、bd請分別找出圖中滿(mǎn)足線(xiàn)面平行位置關(guān)系的所有情況。(共6組線(xiàn)面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線(xiàn)段ae上、q點(diǎn)在線(xiàn)段fc上,連結ph、qg,并繼續探究圖中所具有的線(xiàn)面平行位置關(guān)系?(在變式一的基礎上增加了4組線(xiàn)面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說(shuō)明理由。 [設計意圖:設計二個(gè)變式訓練,目的是通過(guò)問(wèn)題探究、討論,思辨,及時(shí)鞏固定理,運用定理,培養學(xué)生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據判定定理必須在平 面bdd1b1內找(作)一條線(xiàn)與ef平行,聯(lián)想到中點(diǎn)問(wèn)題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。 思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。 思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。 [知識鏈接:根據空間問(wèn)題平面化的思想,因此把找空間平行直線(xiàn)問(wèn)題轉化為找平行四邊形或三角形中位線(xiàn)問(wèn)題,這樣就自然想到了找中點(diǎn)。平行問(wèn)題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問(wèn)題,培養邏輯思維能力的重要思想方法] 4、練一練: 練習1:見(jiàn)課本6頁(yè)練習1、2 練習2:將兩個(gè)全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。 變式:若將練習2中m、n改為ac、bf分點(diǎn)且am = fn,試問(wèn)結論仍成立嗎?試證之。 [設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過(guò)練習2及其變式的訓練,讓學(xué)生能在復雜的圖形中去識圖,去尋找分析問(wèn)題、解決問(wèn)題的途徑與方法,以達到逐步培養空間感與邏輯思維能力。] (四)總結 先由學(xué)生口頭總結,然后教師歸納總結(由多媒體幻燈片展示): 1、線(xiàn)面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)與這個(gè)平面平行。 2、定理的符號表示:ba||? a||b??簡(jiǎn)述:(內外)線(xiàn)線(xiàn)平行則線(xiàn)面平行 3、定理運用的關(guān)鍵是找(作)面內的線(xiàn)與面外的線(xiàn)平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線(xiàn)性質(zhì)等。 七、教學(xué)反思 本節“直線(xiàn)與平面平行的判定”是學(xué)生學(xué)習空間位置關(guān)系的判定與性質(zhì)的第一節課,也是學(xué)生開(kāi)始學(xué)習立幾演澤推理論述的思維方式方法,因此本節課學(xué)習對發(fā)展學(xué)生的空間觀(guān)念和邏輯思維能力是非常重要的。 本節課的設計遵循“直觀(guān)感知——操作確認——思辯論證”的認識過(guò)程,注重引導學(xué)生通過(guò)觀(guān)察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認識直線(xiàn)和平面平行的判定方法,讓學(xué)生通過(guò)自主探索、合作交流,進(jìn)一步認識和掌握空間圖形的性質(zhì),積累數學(xué)活動(dòng)的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀(guān)念與推理能力。 本節課的設計注重訓練學(xué)生準確表達數學(xué)符號語(yǔ)言、文字語(yǔ)言及圖形語(yǔ)言,加強各種語(yǔ)言的互譯。比如上課開(kāi)始時(shí)的復習引入,讓學(xué)生用三種語(yǔ)言的表達,動(dòng)手實(shí)踐、定理探求過(guò)程以及定理描述也注重三種語(yǔ)言的表達,對例題的講解與分析也注意指導學(xué)生三種語(yǔ)言的表達。 本節課對定理的探求與認識過(guò)程的設計始終貫徹直觀(guān)在先,感知在先,學(xué)自己身邊的數學(xué),感知生活中包涵的數學(xué)現象與數學(xué)原理,體驗數學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線(xiàn)面平行的例子,學(xué)生會(huì )舉出日光燈與天花板,電線(xiàn)桿與墻面,轉動(dòng)的門(mén)等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學(xué)生從中抽象概括出定理。 前言 為了更好地貫徹落實(shí)和科課程標準有關(guān)要求,促進(jìn)廣大教師學(xué)習現代教學(xué)理論,進(jìn)一步激發(fā)廣大教師課堂教學(xué)的創(chuàng )新意識,切實(shí)轉變教學(xué)觀(guān)念,積極探索新課程理念下的教與學(xué),有效解決教學(xué)實(shí)踐中存在的問(wèn)題,促進(jìn)課堂教學(xué)質(zhì)量的全面提高,在20xx年由福建省普通教育教學(xué)研究室組織,舉辦了一次教學(xué)設計大賽活動(dòng)。這次活動(dòng)數學(xué)學(xué)科高中組共收到有49篇教學(xué)設計文章。獲獎文章推薦評審專(zhuān)家組本著(zhù)公平、公正的原則,經(jīng)過(guò)認真的評審,全部作品均評出了相應的獎項;專(zhuān)家組還為獲得一、二等獎的作品撰寫(xiě)了點(diǎn)評。本稿收錄的作品全部是參加此次福建省教學(xué)設計競賽獲獎作者的文章。按照征文的規則,我們對入選作品的格式作了一些修飾,并經(jīng)過(guò)適當的整合,以饗讀者。 在此還需要說(shuō)明的是,為了方便閱讀,獲獎文章的排序原則,并非按照獲獎名次的前后順序,而是按照高中數學(xué)新課程必修1—5的內容順序,進(jìn)行編排的。部分體現大綱教材內容的文章則排在后面。 不管你獲得的是哪個(gè)級別的獎項,你們都可以有成就感,因為那是你們用心、用汗澆灌出的果實(shí),它記錄了你們奉獻于數學(xué)教育事業(yè)的心路歷程.書(shū)中每一篇的教學(xué)設計都耐人尋味,都能帶給我們許多遐想和啟迪.你們是優(yōu)秀的,在你們未來(lái)悠遠的職業(yè)里程中,只要努力,將有更多的輝煌在等待著(zhù)大家。謝謝你們! 1、集合與函數概念實(shí)習作業(yè) 一、教學(xué)內容分析 《普通高中課程標準實(shí)驗教科書(shū)·數學(xué)(1)》(人教A版)第44頁(yè)。-----《實(shí)習作業(yè)》。本節課程體現數學(xué)文化的特色,學(xué)生通過(guò)了解函數的發(fā)展歷史進(jìn)一步感受數學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的`過(guò)程中,對函數的概念有更深刻的理解;感受新的學(xué)習方式帶給他們的學(xué)習數學(xué)的樂(lè )趣。 二、學(xué)生學(xué)習情況分析 該內容在《普通高中課程標準實(shí)驗教科書(shū)·數學(xué)(1)》(人教A版)第44頁(yè)。學(xué)生第一次完成《實(shí)習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績(jì)的好壞、家庭有無(wú)電腦、男女生比例、口頭表達能力等),選題時(shí),各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習共享的過(guò)程中受到更多的數學(xué)文化的熏陶。 三、設計思想 《標準》強調數學(xué)文化的重要作用,體現數學(xué)的文化的價(jià)值。數學(xué)教育不僅應該幫助學(xué)生學(xué)習和掌握數學(xué)知識和技能,還應該有助于學(xué)生了解數學(xué)的價(jià)值。讓學(xué)生逐步了解數學(xué)的思想方法、理性精神,體會(huì )數學(xué)家的創(chuàng )新精神,以及數學(xué)文明的深刻內涵。 四、教學(xué)目標 1.了解函數概念的形成、發(fā)展的歷史以及在這個(gè)過(guò)程中起重大作用的歷史事件和人物; 2.體驗合作學(xué)習的方式,通過(guò)合作學(xué)習品嘗分享獲得知識的快樂(lè ); 3.在合作形式的小組學(xué)習活動(dòng)中培養學(xué)生的領(lǐng)導意識、社會(huì )實(shí)踐技能和民主價(jià)值觀(guān)。 五、教學(xué)重點(diǎn)和難點(diǎn) 重點(diǎn):了解函數在數學(xué)中的核心地位,以及在生活里的廣泛應用; 難點(diǎn):培養學(xué)生合作交流的能力以及收集和處理信息的能力。 六、教學(xué)過(guò)程設計 【課堂準備】 1.分組:4~6人為一個(gè)實(shí)習小組,確定一人為組長(cháng)。教師需要做好協(xié)調工作,確保每位學(xué)生都參加。 2.選題:根據個(gè)人興趣初步確定實(shí)習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。 一、探究式教學(xué)模式概述 1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導下,像科學(xué)家發(fā)現真理那樣以類(lèi)似科學(xué)探究的方式來(lái)展開(kāi)學(xué)習活動(dòng),通過(guò)自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內在聯(lián)系,從中探索出知識規律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內容有關(guān)的內容和認知策略直接告訴學(xué)生,而是創(chuàng )造一種適宜的認知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認知策略,從而對教學(xué)目標進(jìn)行一種全方位的學(xué)習,實(shí)現學(xué)生從被動(dòng)學(xué)習到主動(dòng)學(xué)習,培養學(xué)生的科學(xué)探究能力、創(chuàng )新意識和科學(xué)精神?梢(jiàn),探究式教學(xué)主張把學(xué)習知識的過(guò)程和探究知識的過(guò)程統一起來(lái),充分發(fā)揮學(xué)生學(xué)習的自主性和參與性。 2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類(lèi)似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規律的本質(zhì),并培養學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識主題來(lái)展開(kāi)的。這個(gè)學(xué)習環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設想,并以自己的方式檢驗其設想。二是教師可以給學(xué)生提供必要的幫助和指導,使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標有關(guān)的概念和認知策略告訴學(xué)生,取而代之的是教師創(chuàng )造出一種智力交流和社會(huì )交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現規律。 3、探究式教學(xué)模式的特征。 。1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對學(xué)生具有挑戰性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識,是探究教學(xué)成功與否的關(guān)鍵所在。恰當的問(wèn)題會(huì )激起學(xué)生強烈的學(xué)習愿望,并引發(fā)學(xué)生的求異思維和創(chuàng )造思維,F代教育心理學(xué)研究提出:“學(xué)生的學(xué)習過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程!彼耘囵B學(xué)生的問(wèn)題意識是探究式教學(xué)的重要使命。 。2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛(ài)因斯坦說(shuō):“結論總以完成的形式出現,讀者體會(huì )不到探索和發(fā)現的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達到清楚、全面理解的境界!碧骄渴浇虒W(xué)模式正是考慮到這些人的認知特點(diǎn)來(lái)組織教學(xué)的,它強調學(xué)生探索知識的經(jīng)歷和獲得新知識的親身感悟。 。3)開(kāi)放性。開(kāi)放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習、發(fā)現學(xué)習、自主學(xué)習等學(xué)習方式的長(cháng)處,培養學(xué)生良好的學(xué)習態(tài)度和學(xué)習方法,提倡和發(fā)展多樣化的學(xué)習方式。探究式教學(xué)模式要面對大量開(kāi)放性的問(wèn)題,教學(xué)資源和探究的結論面對生活、生產(chǎn)和科研是開(kāi)放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機遇與挑戰。 二、教學(xué)設計案例 1、教學(xué)內容:數字排列中3、9的探究式教學(xué)。 2、教學(xué)目標。 。1)知識與技能:掌握數字排列的知識,能靈活運用所學(xué)知識。 。2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的方法。 。3)情感態(tài)度與價(jià)值觀(guān):培養學(xué)生觀(guān)察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì )到認識客觀(guān)規律的一般過(guò)程。 3、教學(xué)方法:談話(huà)探究法,討論探究法。 4、教學(xué)過(guò)程。 。1)創(chuàng )設情境。教師:在高中數學(xué)第十章的教學(xué)中,有關(guān)數字排列的問(wèn)題占有重要位置。我們曾經(jīng)做過(guò)的有關(guān)數字排列的題目,如“由若干個(gè)數字排列成偶數”、“能被5整除的數”等問(wèn)題,只要使排列成的數的個(gè)位數字為偶數,則這個(gè)數就是偶數,當排列成的數的個(gè)位數字為0或5時(shí),則這個(gè)數就能被5整除。那么能被3整除的數,能被9整除的數有何特點(diǎn)? 。2)提出問(wèn)題。 問(wèn)題1:在用1、2、3、4、5、6六個(gè)數字組成沒(méi)有重復數字的四位數中,是9的倍數的共有() A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè) 問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數字組成沒(méi)有重復數字的自然數中,有多少個(gè)能被6整除的五位數? 。3)探究思考。點(diǎn)評:乍一看問(wèn)題1,對于由若干個(gè)數字排列成9的倍數的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數的個(gè)位數字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數,不能只考慮個(gè)位數字了。于是,需另辟蹊徑,探究能被9整除的數的特點(diǎn),尋求解決問(wèn)題的途徑。 教師:同學(xué)們觀(guān)察81、72、63、54、45、36、27、18、9這些數,甚至再寫(xiě)出幾個(gè)能被9整除的數,如981、1872等,看看它們有何特點(diǎn)? 學(xué)生:它們都滿(mǎn)足“各位數字之和能被9整除”。 教師:此結論的正確性如何? 學(xué)生:老師,我們證明此結論的正確性,好嗎? 教師:好。 學(xué)生:證明:不妨以n是一個(gè)四位數為例證之。 設n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N) 則n=1000a+100b+10c+d =(999a+a)+(99b+b)+(9c+c)+d =(999a+99b+9c)+(a+b+c+d) =9(111a+11b+c)+9m =9(111a+11b+c+m) ∵ a,b,c,m∈N ∴ 111a+11b+c+m∈N 所以n能被9整除 同理可證定理的后半部分。 教師:看來(lái)上述結論正確。所以得到如下定理。 定理:如果一個(gè)自然數n各個(gè)數位上的數字之和能被9整除,那么這個(gè)數n就能夠被9整除;如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。 教師:利用該定理可解決“能被3、9整除”的數字排列問(wèn)題,請同學(xué)們先解答問(wèn)題1。 學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。 教師:?jiǎn)l(fā)學(xué)生觀(guān)察這些數字有何特點(diǎn)?提問(wèn)學(xué)生。 學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數中,選取的四個(gè)數字中含1(或2),或者同時(shí)含1、2,選取的.四個(gè)數字之和都不是9的倍數。 教師:請學(xué)生們繼續嘗試選取其他數字試一試。 學(xué)生:3+4+5+6=18是9的倍數。 教師:因此用1、2、3、4、5、6六個(gè)數字組成沒(méi)有重復數字的四位數中,是9的倍數的數,就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。 故應選D。 。4)學(xué)以致用。 問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數字組成沒(méi)有重復數字的自然數中,有多少個(gè)能被6整除的五位數? 教師:從上面的定理知:如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。同學(xué)們對問(wèn)題2有何想法? 學(xué)生討論: 學(xué)生1:被6整除的五位數必須既能被2整除,又能被3整除,故能被6整除的五位數,即為各位數字之和能被3整除的五位偶數。 學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數字可分兩類(lèi):一類(lèi)是5個(gè)數字中無(wú)0,另一類(lèi)是5個(gè)數字中有0(但不含3)。 學(xué)生3:第一類(lèi):5個(gè)數字中無(wú)0的五位偶數有。 第二類(lèi):5個(gè)數字中含有0不含3的五位偶數有兩類(lèi),第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。 學(xué)生4:由分類(lèi)計數原理得:能被6整除的無(wú)重復數字的五位數共有+ + =108(個(gè))。 。5)概括強化。 重點(diǎn):了解數字排列問(wèn)題的特點(diǎn),理解掌握數字排列中3、9問(wèn)題的規律。 難點(diǎn):數字排列知識的靈活應用。 關(guān)鍵:證明的思路以及定理的得出。 新學(xué)知識與已知知識之間的區別和聯(lián)系:已知知識“由若干個(gè)數字排列成偶數”、“能被5整除的數”等問(wèn)題,只要使排列成的數的個(gè)位數字為偶數,則這個(gè)數就是偶數,當排列成的數的個(gè)位數字為0或5時(shí),則這個(gè)數就能被5整除”。新學(xué)知識“如果一個(gè)自然數n各個(gè)數位上的數字之和能被9整除,那么這個(gè)數n就能夠被9整除;如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。都是數字排列知識,要學(xué)會(huì )靈活應用。 。6)作業(yè)。請同學(xué)們自擬練習題,以求達到熟練解決此類(lèi)問(wèn)題的目的。 總之,探究式教學(xué)模式是針對傳統教學(xué)的種種弊端提出來(lái)的,新課程改革強調改變課程過(guò)于注重知識的傳授和過(guò)于強調接受式學(xué)習的狀況,倡導學(xué)生主動(dòng)參與樂(lè )于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習科學(xué)研究方法,并強調獲得知識、技能的過(guò)程成為學(xué)會(huì )學(xué)習和形成價(jià)值觀(guān)的過(guò)程,以培養學(xué)生的探究精神、創(chuàng )新意識和實(shí)踐能力。 一.教材分析。 ( 1)教材的地位與作用:《等比數列的前n項和》選自《普通高中課程標準數學(xué)教科書(shū)·數學(xué) ( 5),是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思 想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養。 (2)從知識的體系來(lái)看:“等比數列的前n項和”是“等差數列及其前n項和”與“等比數列”內容的延續、不僅加深對函數思想的理解,也為以后學(xué)數列的求和,數學(xué)歸納法等做好鋪墊 二.學(xué)情分析。 ( 1)學(xué)生的已有的知識結構:掌握了等差數列的概念,等差數列的通項公式和求和公式與方法,等比數列的概念與通項公式。 ( 2)教學(xué)對象:高二理科班的學(xué)生,學(xué)習興趣比較濃,表現欲較強,邏輯思維能力也初步形成,具有一定的分析問(wèn)題和解決問(wèn)題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴謹。 (3)從學(xué)生的認知角度來(lái)看:學(xué)生很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯。 三.教學(xué)目標。 根據教學(xué)大綱的要求、本節教材的特點(diǎn)和本班學(xué)生的認知規律,本節課的教學(xué)目標確定為:(1)知識技能目標————理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上,并能初步應用公式解決與之有關(guān)的問(wèn)題。 (2)過(guò)程與方法目標————通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力. (3)情感,態(tài)度與價(jià)值觀(guān)————培養學(xué)生勇于探索、敢于創(chuàng )新的精神,從探索中獲得成功的體驗,感受數學(xué)的奇異美、結構的對稱(chēng)美、形式的簡(jiǎn)潔美。 四.重點(diǎn),難點(diǎn)分析。 教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用。 教學(xué)難點(diǎn):公式的推導方法及公式應用中q與1的關(guān)系。 五.教法與學(xué)法分析. 培養學(xué)生學(xué)會(huì )學(xué)習、學(xué)會(huì )探究是全面發(fā)展學(xué)生能力的重要前提,是高中新課程改革的主要任務(wù)。如何培養學(xué)生學(xué)會(huì )學(xué)習、學(xué)會(huì )探究呢?建構主義認為:“知識不是被動(dòng)吸收的,而是由認知主體主動(dòng)建構的!边@個(gè)觀(guān)點(diǎn)從教學(xué)的角度來(lái)理解就是:知識不是通過(guò)教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習經(jīng)驗,并通過(guò)與他人(在教師指導和學(xué)習伙伴的`幫助下)協(xié)作,主動(dòng)建構而 獲得的,建構主義教學(xué)模式強調以學(xué)生為中心,視學(xué)生為認知的主體,教師只對學(xué)生的意義建構起幫助和促進(jìn)作用。因此,本節課采用了啟發(fā)式和探究式相結合的教學(xué)方法,讓老師的主導性和學(xué)生的主體性有機結合,使學(xué)生能夠愉快地自覺(jué)學(xué)習,通過(guò)學(xué)生自己觀(guān)察、分析、探索等步驟,自己發(fā)現解決問(wèn)題的方法,比較論證后得到一般性結論,形成完整的數學(xué)模型,再運用所得理論和方法去解決問(wèn)題。一句話(huà):還課堂以生命力,還學(xué)生以活力。 六.課堂設計 (一)創(chuàng )設情境,提出問(wèn)題。(時(shí)間設定:3分鐘) [利用投影展示]在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求。西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚。為什么呢? [設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性.故事內容緊扣本節課的主題與重點(diǎn)] 提出問(wèn)題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎? 我先來(lái)介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強校長(cháng),這邊這位是蘇州中學(xué)的劉華老師,那邊那位是大家熟悉的首都師范大學(xué)數學(xué)系博士生導師王尚志教授。歡迎大家來(lái)到我們研討的現場(chǎng)! 老師們都知道,素質(zhì)教育要落實(shí)在課堂上,課堂是我們實(shí)行數學(xué)新課程的主戰場(chǎng),做好教學(xué)設計是我們整個(gè)高中數學(xué)新課程推進(jìn)的一個(gè)關(guān)鍵點(diǎn)。那么,怎樣才能做好數學(xué)的教學(xué)設計呢?我們問(wèn)過(guò)一些老師,大家感覺(jué)有些疑惑,比如說(shuō)有的老師們認為:教學(xué)設計是不是就是備備課,寫(xiě)好一個(gè)教案、做一個(gè)課件,是不是這樣?我們想聽(tīng)聽(tīng)來(lái)自江蘇的老師怎么看這個(gè)問(wèn)題? 羅強:我來(lái)談?wù)勛约簩虒W(xué)設計理論的學(xué)習和實(shí)踐過(guò)程中的一些體會(huì )。以前我們在教學(xué)實(shí)踐中往往把教學(xué)設計變成一種簡(jiǎn)單的教案設計,但實(shí)際上這只是一種經(jīng)驗型的教學(xué)設計,沒(méi)有上升為科學(xué)型的教學(xué)設計。其實(shí),國際上對教學(xué)設計的研究已經(jīng)進(jìn)行多年,提出了許多思想、理論、案例,教學(xué)設計已經(jīng)成為一個(gè)獨立的研究領(lǐng)域。 教學(xué)設計理論的發(fā)展基本上經(jīng)歷了兩個(gè)階段:第一個(gè)階段是突出以“教的傳遞策略”為中心來(lái)進(jìn)行教學(xué)設計的傳統教學(xué)設計理論,它更接近工程學(xué),遵循設計的規則和程序,強調目標遞進(jìn)和按部就班的系統操作過(guò)程,其特點(diǎn)是注重目標細化,注重分層要求,注重教學(xué)內容各要素的協(xié)調。就好像我們要造一幢房子,先要把這幢房子的圖紙設計出來(lái),然后再設計一個(gè)施工的藍圖,教學(xué)就是按照這樣的設計來(lái)進(jìn)行實(shí)施的一個(gè)過(guò)程。 第二個(gè)階段是突出以“學(xué)的組織方式”為中心來(lái)進(jìn)行教學(xué)設計的現代教學(xué)設計理論,它的基礎是信息加工理論與建構主義的學(xué)習理論,現代教學(xué)設計理論強調依據學(xué)習任務(wù)類(lèi)型(如認知、情感與心理動(dòng)作等)來(lái)選擇教學(xué)策略,強調以問(wèn)題為中心,營(yíng)造一個(gè)能激活學(xué)生原有知識經(jīng)驗,有利于新知識建構的學(xué)習環(huán)境。其特點(diǎn)是問(wèn)題與環(huán)境,強調創(chuàng )設情境,提出問(wèn)題,營(yíng)造問(wèn)題解決的環(huán)境,突出學(xué)生的自主學(xué)習和自主探究。 按照新的教學(xué)設計的理論,我們應該以學(xué)為中心來(lái)進(jìn)行教學(xué)設計,簡(jiǎn)單的說(shuō)就是——為學(xué)習而設計教學(xué)!打個(gè)比喻,就是說(shuō)我們教師好比是導游,帶著(zhù)學(xué)生去一個(gè)新的景點(diǎn)旅游,那么在這個(gè)過(guò)程中間,教學(xué)設計就是設計這么一個(gè)導游圖,讓學(xué)生在參觀(guān)各個(gè)景點(diǎn)的過(guò)程中,經(jīng)歷學(xué)習這些知識的一種過(guò)程。 按照為學(xué)習而設計教學(xué)的理念,我覺(jué)得在教學(xué)設計時(shí)要考慮三條線(xiàn)索,這樣實(shí)際上也就構成了教學(xué)設計的一種三維結構。第一條線(xiàn)索就是一種數學(xué)知識線(xiàn)索。因為教師進(jìn)行的是學(xué)科教學(xué);第二個(gè)線(xiàn)索是學(xué)生的認知線(xiàn)索。因為學(xué)習的主體是學(xué)生;第三個(gè)線(xiàn)索就是教師的教學(xué)組織線(xiàn)索,因為教學(xué)過(guò)程是通過(guò)教師的組織來(lái)實(shí)現的。比如第一條線(xiàn)索——數學(xué)知識,我覺(jué)得數學(xué)知識實(shí)際有三個(gè)形態(tài):一是自然形態(tài),它既存在于客觀(guān)世界中間,實(shí)際上也存在于學(xué)生的頭腦中間;二是學(xué)術(shù)形態(tài),它是作為數學(xué)學(xué)科的一種知識體系而存在。那么,我們的教學(xué)就是要在數學(xué)的自然形態(tài)和學(xué)術(shù)形態(tài)的中間架一座橋梁,這座橋梁就是數學(xué)的教育形態(tài)。因此,我覺(jué)得教學(xué)設計的本質(zhì)就是設計好數學(xué)的教育形態(tài),教學(xué)設計的過(guò)程實(shí)際上就是構建數學(xué)教育形態(tài)的一個(gè)過(guò)程。 通過(guò)對教學(xué)設計理論的學(xué)習,并在實(shí)踐中反思和總結,我的體會(huì )很深。有一位美國學(xué)者蘭達曾經(jīng)說(shuō)過(guò):教學(xué)設計是使天才能夠做到的事一般人也能去做。我想對教學(xué)設計理論的學(xué)習是一個(gè)大家都要努力的目標。 張思明:剛才羅強老師從理論上分析了什么是教學(xué)設計?教學(xué)設計應該關(guān)注哪些問(wèn)題?下面我們請劉華老師幫我們分析一下:在你們實(shí)驗區和老師接觸的實(shí)踐中,你感覺(jué)到老師們在教學(xué)設計中存在著(zhù)哪些主要問(wèn)題? 劉華:我想解剖一個(gè)由職初教師,就是剛剛工作的青年教師所提供的一個(gè)教學(xué)案例。 我先簡(jiǎn)單介紹一下他的教學(xué)設計。這是高一函數單調性的一節起始課,在教學(xué)設計中,這個(gè)職初教師首先明確了這節課的三維目標,然后他提出了兩個(gè)生活中的情境,一個(gè)情境是生活中的`氣溫圖;第二個(gè)情境是股票的價(jià)格走勢圖,然后引入新課。接著(zhù)把函數單調性的概念介紹給學(xué)生,緊接著(zhù)進(jìn)入了例題講解階段,最后是有兩個(gè)思考題。 我覺(jué)得這個(gè)教學(xué)設計大致存在這樣四點(diǎn)比較普遍的問(wèn)題: 第一個(gè)問(wèn)題就是這位教師在確定課程目標的時(shí)候,比較機械地套用了新課程的理念,按照“知識技能,方法與過(guò)程,情感、態(tài)度、價(jià)值觀(guān)”這樣的三維目標來(lái)敘述他的本節課目標。在這些目標中,知識與技能的目標還是比較實(shí)在的,但“過(guò)程與方法”的目標以及“情感、態(tài)度、價(jià)值觀(guān)”的目標就比較空洞,流于形式。其實(shí),這位老師對教學(xué)目標并沒(méi)有做深入的分析,這樣的教學(xué)目標只是一個(gè)標簽而已,這是第一個(gè)問(wèn)題。 第二個(gè)問(wèn)題是問(wèn)題情境的設計。好的情境應當是兼顧生活化與數學(xué)化,股票的價(jià)格走勢圖這個(gè)情境離學(xué)生的生活太遠,其中還包含了許多股票方面的專(zhuān)門(mén)知識,對函數單調性這個(gè)數學(xué)概念的反映也不夠準確,作為本課的情境,不太恰當。 第三個(gè)問(wèn)題就是在情境到數學(xué)概念的產(chǎn)生過(guò)程中,應當讓學(xué)生充分體驗或參與數學(xué)化的探索過(guò)程,從而建構起函數單調性這一概念。我們看到在這位教師的設計當中,他忽略了學(xué)生活動(dòng),尤其是學(xué)生思維活動(dòng)這樣一個(gè)環(huán)節,而是直接把概念拋給了學(xué)生。我們認為學(xué)生在數學(xué)學(xué)習中,“過(guò)程”相對來(lái)說(shuō)比僅僅接受概念這個(gè)“結果”更為重要。 最后一個(gè)問(wèn)題就是我們發(fā)現有很多老師認為數學(xué)教學(xué)設計主要就是習題的設計,這位教師本節課的例題、習題量非常多,而且對這些習題的要求他存在著(zhù)一步到位的傾向,尤其是他最后拋出來(lái)的含字母的函數單調性的探索這個(gè)問(wèn)題,我們覺(jué)得在新授課當中這個(gè)習題的要求太高了。我覺(jué)得老師們在教學(xué)設計中主要存在這樣幾點(diǎn)問(wèn)題。 張思明:劉華老師談了一個(gè)單調性的案例,對一個(gè)新教師的案例做了一個(gè)分析,分析出了我們老師在教學(xué)設計中常常出現的一些問(wèn)題。那么面對這樣一些問(wèn)題,我們應該怎么辦?我們就以這個(gè)案例為出發(fā)點(diǎn),請羅強老師對函數單調性這個(gè)課題做了一個(gè)分析和再創(chuàng )造的工作,在這個(gè)工作中我們可以看到如何通過(guò)教師自己的再學(xué)習、再認識,設計出一個(gè)更好、更適用于學(xué)生的教學(xué)設計。我們來(lái)看一下羅強老師的說(shuō)課錄像。 羅強老師的說(shuō)課:各位老師大家好,我向大家匯報一下我對函數單調性的教學(xué)設計。 首先談一下我對教學(xué)設計的認識。我覺(jué)得教學(xué)設計的根本目的是創(chuàng )設一個(gè)有效的教學(xué)系統,這樣的教學(xué)系統不是隨意出現的而是教師精心創(chuàng )設的,沒(méi)有有效的教學(xué)設計就不可能保證教學(xué)的效果和質(zhì)量。教學(xué)設計最根本的著(zhù)力點(diǎn)是“為學(xué)習設計教學(xué)”,而不是“為教學(xué)設計學(xué)習”。 教學(xué)設計的首要任務(wù)就是明確教學(xué)目標,實(shí)際上教學(xué)目標是教學(xué)設計的靈魂和統帥,將指引后續教學(xué)設計的方向,決定后續教學(xué)設計的具體工作。在制定教學(xué)目標的時(shí)候,我覺(jué)得要把握以下幾點(diǎn): 第一,把握教學(xué)要求,不求一步到位。函數單調性是高中階段刻劃函數變化的一個(gè)最基本的性質(zhì)。在高中數學(xué)課程中,對于函數單調性的研究分成兩個(gè)階段:第一個(gè)階段是用運算的性質(zhì)研究單調性,知道它的變化趨勢;第二階段用導數的性質(zhì)研究單調性,知道它的變化快慢。那么高一我們是處在第一個(gè)階段。第二,明確知識目標,落實(shí)隱性目標。知識目標往往就是教學(xué)的顯性目標,確定知識目標的關(guān)鍵在于分清主次輕重,把握好教學(xué)要求。根據課程標準的要求,本節課的知識目標定位在以下三個(gè)方面:一是理解函數單調性的概念;二是掌握判斷函數單調性的方法;三是會(huì )用定義證明一些簡(jiǎn)單函數在某個(gè)區間上的單調性。另外這節課的隱性目標我覺(jué)得也很重要,因為函數單調性的定義是對函數圖象特征的一種數學(xué)描述,它經(jīng)歷了由圖象直觀(guān)特征到自然語(yǔ)言描述再到數學(xué)符號的描述的進(jìn)化過(guò)程,反映了數學(xué)的理性思維和理性精神。對高一學(xué)生來(lái)講它是一個(gè)很有價(jià)值的數學(xué)教育載體和契機。因此這節課的隱性目標應該包括讓學(xué)生體驗數學(xué)知識的發(fā)生發(fā)展過(guò)程,學(xué)會(huì )數學(xué)概念符號化的建構過(guò)程。根據剛才的分析,我把教學(xué)流程分成了三個(gè)階段:第一個(gè)階段是進(jìn)行函數單調性概念的數學(xué)化過(guò)程;第二個(gè)階段是從不同的角度幫助學(xué)生深入理解函數單調性的概念;第三個(gè)階段是讓學(xué)生學(xué)會(huì )判斷,并用函數單調性的定義證明函數的單調性。 第一階段的教學(xué)流程分成三個(gè)教學(xué)環(huán)節。第一,問(wèn)題情境;第二,溫故知新;第三,建構概念。具體如下: 先是創(chuàng )設問(wèn)題情境。由老師和學(xué)生一起舉出生活中描繪上升或者下降的變化規律的成語(yǔ)。老師可以啟發(fā)一下,先說(shuō)一個(gè)“蒸蒸日上”,然后和學(xué)生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語(yǔ)。然后請學(xué)生根據上述成語(yǔ),給出一個(gè)函數,并在平面直角坐標系中繪制相應的函數圖象。這樣設計的意圖是讓學(xué)生結合生活體驗用樸素的生活語(yǔ)言描繪變化規律,體會(huì )如何將文字語(yǔ)言轉化為圖形語(yǔ)言。 接下來(lái)是溫故知新。在剛才學(xué)生繪制出的三個(gè)函數圖象的基礎上,我請學(xué)生觀(guān)察它們變化的趨勢。在剛才學(xué)生繪制的三個(gè)函數圖象的基礎上,再請學(xué)生用初中的語(yǔ)言來(lái)敘述什么叫圖象呈逐漸上升的趨勢,也就是“函數值隨著(zhù)的增大而增大”。這樣設計的意圖是讓學(xué)生對照繪制的函數圖象,用自然語(yǔ)言描述函數的變化規律,重溫初中函數單調性的描述定義。 張思明:剛才我們看到了時(shí)駿老師的說(shuō)課,下面我們來(lái)聽(tīng)一聽(tīng)嘉賓對這個(gè)說(shuō)課的分析。 羅強:我還是要強調教學(xué)設計一定要注意為學(xué)習而設計教學(xué)。還是拿我剛才的這個(gè)比喻,就是教師帶學(xué)生去旅游。既然是帶學(xué)生去旅游,首先就要考慮我要帶學(xué)生到什么地方去?然后需要考慮我怎么才能夠帶學(xué)生到達這個(gè)地方?然后我要確定學(xué)生是不是真的到達了這個(gè)地方?還要注意的是,作為教學(xué)的一種延伸,我覺(jué)得還應該讓學(xué)生有興趣、有能力繼續他自己的旅程。我覺(jué)得這是我們教學(xué)設計要做的主要工作。 張思明:通過(guò)以上幾個(gè)案例,我想老師們對于如何做教學(xué)設計有了一個(gè)初步的認識。怎樣做好教學(xué)設計呢?我們也想聽(tīng)一聽(tīng)在教育指導部門(mén)的老師的一些想法,我們特別采訪(fǎng)了江蘇省教研室的董林偉主任,我們來(lái)聽(tīng)一聽(tīng)董主任關(guān)于教學(xué)設計的思考和認識。 董主任:關(guān)于設計這兩個(gè)詞大家應該都非常的熟悉。當人們要從事一項有目的的活動(dòng)的時(shí)候,事先都要有一些設想,要進(jìn)行一些規劃,要進(jìn)行一些設計。作為我們教學(xué)工作者來(lái)說(shuō),在開(kāi)始我們的教學(xué)活動(dòng)之前,我們的老師都必須做一項非常重要的工作,那就是教學(xué)設計。今天我要談的就是關(guān)于教學(xué)設計的話(huà)題。我想就三個(gè)方面來(lái)談?wù)勎业囊恍┗鞠敕。第一,我想先談(wù)勈裁唇薪虒W(xué)設計?第二,談?wù)勎覀冊诮虒W(xué)設計過(guò)程中應該來(lái)設計一些什么?第三,在設計的過(guò)程當中我們要注意哪幾點(diǎn)?下面我想簡(jiǎn)要的把這三個(gè)方面跟大家做一個(gè)交流。 一、關(guān)于什么叫教學(xué)設計? 所謂的教學(xué)設計就是用系統的方法對各種課程資源進(jìn)行有機的整合,對教學(xué)過(guò)程中相互聯(lián)系的各個(gè)部分作出整體安排的一種構想。它是一種構想,是一種整體的安排,是我們教師為將來(lái)進(jìn)行的教學(xué)勾畫(huà)的一些圖景,它反映了我們的教師對自己未來(lái)教學(xué)的一種認識和期望。如果通俗一點(diǎn)來(lái)說(shuō),那么所謂的教學(xué)設計可以這樣來(lái)理解,就是:你要把學(xué)生帶到哪里去?你怎樣把學(xué)生帶到那里去?你這樣做能把學(xué)生帶到那里去嗎? 二、在教學(xué)設計過(guò)程當中我們應該關(guān)注些什么,就是說(shuō)設計一些什么? 首先,我們必須明確我們的教學(xué)目標,教學(xué)目標是我們教學(xué)根本的指向與核心的任務(wù),是教學(xué)設計的關(guān)鍵。教學(xué)的目標是教學(xué)中師生所預期達到的一種教學(xué)效果和標準,因此,明確教學(xué)目標就是要明確你要把學(xué)生帶到哪里去。在確定教學(xué)目標的時(shí)候,我們要關(guān)注以下的幾點(diǎn):第一,整體性。就是要注意這部分內容在整個(gè)高中階段數學(xué)教學(xué)中的聯(lián)系,以達到教學(xué)的一種連貫性,要正確處理好我們的近期的目標跟遠期目標的相互關(guān)系。第二,在我們明確目標的時(shí)候,要關(guān)注它的全面性。新課程對數學(xué)教學(xué)的目標提出了新的一種要求,三維目標在關(guān)注知識結果的同時(shí),更注重對過(guò)程目標的關(guān)注和對學(xué)習者——學(xué)生的關(guān)注,更關(guān)注學(xué)生獲取數學(xué)知識的過(guò)程以及在學(xué)習中的經(jīng)歷、感受和體驗。因此,教師在設計數學(xué)教學(xué)目標時(shí),應特別注意關(guān)注新課程所提出的過(guò)程性目標。第三,我們要關(guān)注目標的現實(shí)性。確定教學(xué)目標時(shí),應當注意它與所授課任務(wù)的實(shí)質(zhì)性聯(lián)系,以避免目標空洞、無(wú)法落實(shí)。我們在設計教學(xué)目標時(shí),常見(jiàn)的一種狀況是目標過(guò)分的大,過(guò)分的空洞,那么在落實(shí)過(guò)程中,就難以達到預設的目標。其次,我們在教學(xué)設計中要非常關(guān)注學(xué)生,要了解學(xué)生。我想,以下幾個(gè)方面,至少老師在教學(xué)設計過(guò)程中應該心中有數。 第一,在數學(xué)方面學(xué)生以前做過(guò)什么?他在數學(xué)活動(dòng)或者是在數學(xué)實(shí)驗方面,曾經(jīng)做過(guò)什么?這里我們實(shí)際上要關(guān)注的是學(xué)生的活動(dòng)經(jīng)驗。 第二,不同的學(xué)生在思維方式上會(huì )有什么不同。實(shí)際上就是要在教學(xué)中關(guān)注我所授課的學(xué)生的特點(diǎn),關(guān)注我班學(xué)生的構成,班級當中不同群體的學(xué)生在思維方面有些什么樣的不同。 第三,要初步確定課堂的組織形式,就是說(shuō)我這一堂課是整個(gè)班級一起學(xué)習,還是將學(xué)生分成若干個(gè)組來(lái)活動(dòng),甚至于是一種個(gè)體性的活動(dòng),包括開(kāi)展一些個(gè)體性的實(shí)驗活動(dòng),包括自主學(xué)習的一種活動(dòng)方式。組織形式上還要關(guān)注這堂課需要利用什么模型?是否需要做適當的課件?或者準備一些相關(guān)的硬件設施。這也是我們在確定課堂組織形式是所必須要關(guān)注的。 第四,要勾勒教學(xué)的一種順序。這個(gè)順序當中主要包括這樣幾點(diǎn): 第一點(diǎn),應當怎樣提出主題,通俗一點(diǎn)講就是問(wèn)題情境的創(chuàng )設。關(guān)于問(wèn)題情境的創(chuàng )設,我們在相關(guān)的專(zhuān)題中也都提到它的重要性和一些要求。我們在勾勒教學(xué)順序的時(shí)候,首先要關(guān)注的是怎樣提出主題,這個(gè)主題應該是跟學(xué)生接近的,又要能夠引起他的興趣,又要圍繞著(zhù)我們的教學(xué)主題的,而且能夠使得學(xué)生迅速的進(jìn)入學(xué)習活動(dòng)中。 第二點(diǎn),就是要關(guān)注是否需要復習以前的相關(guān)知識。一堂課的教學(xué)它往往不是獨立的,而是有前后聯(lián)系的,因此需要考慮我在這堂課教學(xué)中是否需要復習相關(guān)的知識? 第三點(diǎn),當學(xué)生對材料產(chǎn)生爭論的時(shí)候,你準備提出怎樣的探索性問(wèn)題。當我們提出問(wèn)題以后學(xué)生可能會(huì )產(chǎn)生什么樣的一種思考,可能會(huì )產(chǎn)生一種什么樣的爭論?我們要了解這些爭論的思維的背景,需要進(jìn)行正確的引導,那么你就必須要設計好一些問(wèn)題串,來(lái)引導學(xué)生圍繞主題展開(kāi)探索。 第四點(diǎn),我們在設計教學(xué)程序的過(guò)程中要關(guān)注一下我們使用的材料,我們的課本提出了什么樣的觀(guān)點(diǎn),使用什么樣課外的材料來(lái)幫助我們的教學(xué)。 第五點(diǎn),要根據學(xué)生對主題的掌握程度,準備幾個(gè)可以供選擇的,課堂當中要自主完成的練習,或者是課后要完成家庭作業(yè)。這些是勾勒我們整個(gè)教學(xué)流程的一些關(guān)鍵程序。 三、教學(xué)設計中我們應該注意的方面。 教學(xué)設計永遠只是教學(xué)過(guò)程的一種預期,實(shí)際的教學(xué)活動(dòng)則永遠是一個(gè)謎。我們老師都有經(jīng)驗,同樣的一個(gè)課題,同一個(gè)老師的備課,他在不同班的授課過(guò)程中都會(huì )產(chǎn)生不同的教學(xué)流程、教學(xué)效果。因為我們所面對的學(xué)生是不同的,是在變化的,我們的教學(xué)生成是變化的,只有當這堂課教學(xué)完成了,我們才能知道這堂課最后的結果。所以前面的教學(xué)設計只是一種預期,我們的教學(xué)設計就是要關(guān)注這樣的一種變化。 因此,教學(xué)設計首先要注意它的整體性,就是說(shuō)我們的教學(xué)設計不是一種片斷,是一種整體的設計,它不是寫(xiě)在我們紙上的一種文本,而是我們教師對自己和學(xué)生所持的一種整體性的目標。其次,要注意它的可變性,沒(méi)有一件事情是絲毫不差地按照計劃進(jìn)行的。學(xué)生的思維可能還停留在你認為根本不重要的問(wèn)題上,他們還會(huì )以你幾乎不能想象的方式來(lái)理解某些概念。當活動(dòng)過(guò)程受到影響時(shí),你必須放棄你原來(lái)的教學(xué)計劃,運用你對學(xué)生已有的知識的了解和更宏觀(guān)的數學(xué)教學(xué)目標,去指導你的教學(xué)行動(dòng),也就是說(shuō)要產(chǎn)生一些生成的問(wèn)題。第三,要注意它創(chuàng )造性。我們的教師很大程度上會(huì )依賴(lài)于教材或教學(xué)參考書(shū),以確保他們的數學(xué)教學(xué)內容符合一個(gè)內部連貫的發(fā)展框架。這種依賴(lài)有一定的好處,它能夠使得我們的教學(xué)設計能夠圍繞著(zhù)我們課程的設計來(lái)進(jìn)行,但是同時(shí)也存在一些問(wèn)題,就是說(shuō)畢竟教材是我們課程的一種呈現,跟教學(xué)的呈現還是有著(zhù)本質(zhì)差別的。我們的教學(xué)設計應該是一種流動(dòng)的過(guò)程,應該適合我們的學(xué)生,就像設計師設計的服裝要符合你所設計的群體的特點(diǎn)和要求,如果考慮到個(gè)體,就要符合他的氣質(zhì),符合他的整體形象。我們的教學(xué)設計也是這樣,我想每個(gè)人都應該有個(gè)人設計的一種思考和魅力。 剛才談到這幾點(diǎn)僅供我們老師做一種參考。 張思明:各位老師,我們這一講把教學(xué)設計中存在的問(wèn)題通過(guò)幾個(gè)案例給大家做了一個(gè)初步的展示。我想教學(xué)設計中的問(wèn)題是一個(gè)教學(xué)實(shí)踐過(guò)程中產(chǎn)生的問(wèn)題,我們每一個(gè)老師都有自己的設計理念,都有自己設計成功或者不如意甚至失敗的地方。我們希望研討是一個(gè)互動(dòng)的過(guò)程,我們真誠的期待著(zhù)老師們把您們在教學(xué)設計中遇到的問(wèn)題和成功的經(jīng)驗寄給我們,我們一起來(lái)研討。那么這一講就到這里,謝謝老師們的參與! 一、教學(xué)目標 1、在初中學(xué)過(guò)原命題、逆命題知識的基礎上,初步理解四種命題。 2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。 3、通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力 4、初步培養學(xué)生反證法的數學(xué)思維。 二、教學(xué)分析 重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系 1、本小節首先從初中數學(xué)的命題知識,給出四種命題的概念,接著(zhù),講述四種命題的關(guān)系,最后,在初中的基礎上,結合四種命題的知識,進(jìn)一步講解反證法。 2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節的內容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題, 。、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。 三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導入法) 1、以故事形式入題 2、多媒體演示 四、教學(xué)過(guò)程 。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話(huà):某人要請甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話(huà)說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì )說(shuō)話(huà),但是你想過(guò)這里面所蘊涵的數學(xué)思想嗎?通過(guò)這節課的學(xué)習我們就能揭開(kāi)它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試! 設計意圖:創(chuàng )設情景,激發(fā)學(xué)生學(xué)習興趣 。ǘ⿵土曁釂(wèn): 1.命題“同位角相等,兩直線(xiàn)平行”的條件與結論各是什么? 2.把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題是什么? 3.原命題真,逆命題一定真嗎? “同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真. 學(xué)生活動(dòng): 口答: 。1)若同位角相等,則兩直線(xiàn)平行; 。2)若一個(gè)四邊形是正方形,則它的四條邊相等. 設計意圖:通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎. 。ㄈ┬抡n講解: 1.命題“同位角相等,兩直線(xiàn)平行”的條件是“同位角相等”,結論是“兩直線(xiàn)平行”;如果把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題就是“兩直線(xiàn)平行,同位角相等”。也就是說(shuō),把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。 2.把命題“同位角相等,兩直線(xiàn)平行”的條件與結論同時(shí)否定,就得到新命題“同位角不相等,兩直線(xiàn)不平行”,這個(gè)新命題就叫做原命題的否命題。 3.把命題“同位角相等,兩直線(xiàn)平行”的條件與結論互相交換并同時(shí)否定,就得到新命題“兩直線(xiàn)不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。 。ㄋ模┙M織討論: 讓學(xué)生歸納什么是否命題,什么是逆否命題。 例1及例2 。ㄎ澹┱n堂探究:“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真? 學(xué)生活動(dòng): 討論后回答 這兩個(gè)逆否命題都真. 原命題真,逆否命題也真 引導學(xué)生討論原命題的'真假與其他三種命題的真 假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。 。┱n堂小結: 1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是: 原命題若p則q; 逆命題若q則p;(交換原命題的條件和結論) 否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結論) 逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時(shí)否定) 2、四種命題的關(guān)系 。1).原命題為真,它的逆命題不一定為真. 。2).原命題為真,它的否命題不一定為真. 。3).原命題為真,它的逆否命題一定為真 。ㄆ撸┗乜垡 分析引入中的笑話(huà),先討論,后總結:現在我們來(lái)分析一下主人說(shuō)的四句話(huà): 第一句:“該來(lái)的沒(méi)來(lái)” 其逆否命題是“不該來(lái)的來(lái)了”,甲認為自己是不該來(lái)的,所以甲走了。 第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認為自己該走,所以乙也走了。 第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認為說(shuō)的是自己,所以丙也走了。 同學(xué)們,生活中處處是數學(xué),期待我們善于發(fā)現的眼睛 五、作業(yè) 1.設原命題是“若 斷它們的真假.,則”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判 2.設原命題是“當時(shí),若,則”,寫(xiě)出它的逆命題、否定命與逆否命題,并分別判斷它們的真假. 教學(xué)目標 1.明確等差數列的定義. 2.掌握等差數列的通項公式,會(huì )解決知道中的三個(gè),求另外一個(gè)的問(wèn)題 3.培養學(xué)生觀(guān)察、歸納能力. 教學(xué)重點(diǎn) 1. 等差數列的概念; 2. 等差數列的.通項公式 教學(xué)難點(diǎn) 等差數列“等差”特點(diǎn)的理解、把握和應用 教具準備 投影片1張 教學(xué)過(guò)程 (I)復習回顧 師:上兩節課我們共同學(xué)習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個(gè)公式從不同的角度反映數列的特點(diǎn),下面看一些例子。(放投影片) (Ⅱ)講授新課 師:看這些數列有什么共同的特點(diǎn)? 1,2,3,4,5,6; ① 10,8,6,4,2,…; ② 生:積極思考,找上述數列共同特點(diǎn)。 對于數列①(1≤n≤6);(2≤n≤6) 對于數列②-2n(n≥1)(n≥2) 對于數列③(n≥1)(n≥2) 共同特點(diǎn):從第2項起,第一項與它的前一項的差都等于同一個(gè)常數。 師:也就是說(shuō),這些數列均具有相鄰兩項之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數列,我們把它叫做等差數。 一、定義: 等差數列:一般地,如果一個(gè)數列從第2項起,每一項與空的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示。 如:上述3個(gè)數列都是等差數列,它們的公差依次是1,-2, 。 二、等差數列的通項公式 師:等差數列定義是由一數列相鄰兩項之間關(guān)系而得。若一等差數列的首項是,公差是d,則據其定義可得: 若將這n-1個(gè)等式相加,則可得: 即:即:即:…… 由此可得:師:看來(lái),若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。 如數列①(1≤n≤6) 數列②:(n≥1) 數列③:(n≥1) 由上述關(guān)系還可得:即:則:=如:三、例題講解 例1:(1)求等差數列8,5,2…的第20項 (2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項? 解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數列的第100項。 (Ⅲ)課堂練習 生:(口答)課本P118練習3 (書(shū)面練習)課本P117練習1 師:組織學(xué)生自評練習(同桌討論) (Ⅳ)課時(shí)小結 師:本節主要內容為:①等差數列定義。 即(n≥2) 、诘炔顢盗型椆 (n≥1) 推導出公式:(V)課后作業(yè) 一、課本P118習題3.2 1,2 二、1.預習內容:課本P116例2P117例4 2.預習提綱: 、偃绾螒玫炔顢盗械亩x及通項公式解決一些相關(guān)問(wèn)題? 、诘炔顢盗杏心男┬再|(zhì)? 【高中數學(xué)教學(xué)設計】相關(guān)文章: 高中數學(xué)教學(xué)設計05-27 高中數學(xué)教學(xué)設計獲獎05-03 高中數學(xué)優(yōu)秀教學(xué)設計12-27 高中數學(xué)對數教學(xué)設計06-01 最新高中數學(xué)教學(xué)設計04-28 高中數學(xué)課堂教學(xué)設計(精選15篇)08-02 高中數學(xué)教學(xué)總結02-05 高中數學(xué)教學(xué)反思04-05 高中數學(xué)教學(xué)總結08-06高中數學(xué)教學(xué)設計3
高中數學(xué)教學(xué)設計4
高中數學(xué)教學(xué)設計5
高中數學(xué)教學(xué)設計6
高中數學(xué)教學(xué)設計7
高中數學(xué)教學(xué)設計8
高中數學(xué)教學(xué)設計9
高中數學(xué)教學(xué)設計10
高中數學(xué)教學(xué)設計11
高中數學(xué)教學(xué)設計12
高中數學(xué)教學(xué)設計13
高中數學(xué)教學(xué)設計14
高中數學(xué)教學(xué)設計15