- 相關(guān)推薦
高一數學(xué)公開(kāi)課教案(通用5篇)
作為一名無(wú)私奉獻的老師,常常要寫(xiě)一份優(yōu)秀的教案,借助教案可以提高教學(xué)質(zhì)量,收到預期的教學(xué)效果。那要怎么寫(xiě)好教案呢?以下是小編整理的高一數學(xué)公開(kāi)課教案(通用5篇),希望能夠幫助到大家。

高一數學(xué)公開(kāi)課教案1
一、教材
《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節的內容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內容之一。從知識體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續與提高,又是學(xué)習切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎。從數學(xué)思想方法層面上看它運用運動(dòng)變化的觀(guān)點(diǎn)揭示了知識的發(fā)生過(guò)程以及相關(guān)知識間的內在聯(lián)系,滲透了數形結合、分類(lèi)討論、類(lèi)比、化歸等數學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節的學(xué)習過(guò)程中掌握了點(diǎn)的坐標、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的`交點(diǎn);具有用坐標法研究點(diǎn)與圓的位置關(guān)系的基礎;具有一定的數形結合解題思想的基礎。
三、教學(xué)目標
(一)知識與技能目標
能夠準確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。
(二)過(guò)程與方法目標
經(jīng)歷操作、觀(guān)察、探索、總結直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀(guān)察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀(guān)目標
激發(fā)求知欲和學(xué)習興趣,鍛煉積極探索、發(fā)現新知識、總結規律的能力,解題時(shí)養成歸納總結的良好習慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線(xiàn)與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì )用解析法解決問(wèn)題的數學(xué)思想。
五、教學(xué)方法
根據本節課教材內容的特點(diǎn),為了更直觀(guān)、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺,通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀(guān),為學(xué)生的數學(xué)探究與數學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習的方式,這樣可以為不同認知基礎的學(xué)生提供學(xué)習機會(huì ),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設計一系列問(wèn)題串,以引導學(xué)生的數學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導入新課
教師借助多媒體創(chuàng )設泰坦尼克號的情景,并從中抽象出數學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì )撞到冰山呢?
教師引導學(xué)生回顧初中已經(jīng)學(xué)習的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉化成數學(xué)簡(jiǎn)圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問(wèn)題,有利于保持學(xué)生知識結構的連續性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見(jiàn)解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數
即研究方程組解的個(gè)數,具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對比兩種方法,由學(xué)生觀(guān)察實(shí)踐發(fā)現,兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學(xué)生解答,總結思路。
已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線(xiàn)與圓的方程之后,圓心坐標和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數確定直線(xiàn)與圓的交點(diǎn)個(gè)數,進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當方程組有兩組實(shí)數解時(shí),直線(xiàn)l與圓C相交;
當方程組有一組實(shí)數解時(shí),直線(xiàn)l與圓C相切;
當方程組沒(méi)有實(shí)數解時(shí),直線(xiàn)l與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對部分學(xué)生加以指導。最后對黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對基礎題的練習,鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續學(xué)習的信心。
(五)小結作業(yè)
在小結環(huán)節,我會(huì )以口頭提問(wèn)的方式:
(1)這節課學(xué)習的主要內容是什么?
(2)在數學(xué)問(wèn)題的解決過(guò)程中運用了哪些數學(xué)思想?
設計意圖:?jiǎn)l(fā)式的課堂小結方式能讓學(xué)生主動(dòng)回顧本節課所學(xué)的知識點(diǎn)。也促使學(xué)生對知識網(wǎng)絡(luò )進(jìn)行主動(dòng)建構。
作業(yè):在學(xué)生回顧本堂學(xué)習內容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡(jiǎn)捷,明確本節課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對用方程組解的個(gè)數的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節課匯報。
七、板書(shū)設計
我的板書(shū)本著(zhù)簡(jiǎn)介、直觀(guān)、清晰的原則,這就是我的板書(shū)設計。
高一數學(xué)公開(kāi)課教案2
教學(xué)目標:
1.進(jìn)一步理解對數函數的性質(zhì),能運用對數函數的相關(guān)性質(zhì)解決對數型函數的常見(jiàn)問(wèn)題.
2.培養學(xué)生數形結合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對數函數性質(zhì)的應用.
教學(xué)難點(diǎn):
對數函數的性質(zhì)向對數型函數的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復習對數函數的性質(zhì).
2.回答下列問(wèn)題.
(1)函數y=log2x的值域是 ;
(2)函數y=log2x(x≥1)的值域是 ;
(3)函數y=log2x(0
3.情境問(wèn)題.
函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數學(xué)運用
例1 求函數y=log2(x2+2x+2)的定義域和值域.
練習:
(1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數 ,x(0,8]的值域是 .
(3)函數y=log (x2-6x+17)的值域 .
(4)函數 的值域是_______________.
例2 判斷下列函數的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實(shí)數a 取值范圍.
例4 已知函數y=loga(1-ax)(a>0,a≠1).
(1)求函數的.定義域與值域;
(2)求函數的單調區間.
練習:
1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫(xiě)出所有正確結論的序號).
2.函數y=lg( -1)的圖象關(guān)于 對稱(chēng).
3.已知函數 (a>0,a≠1)的圖象關(guān)于原點(diǎn)對稱(chēng),那么實(shí)數m= .
4.求函數 ,其中x [ ,9]的值域.
四、要點(diǎn)歸納與方法小結
(1)借助于對數函數的性質(zhì)研究對數型函數的定義域與值域;
(2)換元法;
(3)能畫(huà)出較復雜函數的圖象,根據圖象研究函數的性質(zhì)(數形結合).
五、作業(yè)
課本P70~71-4,5,10,11.
高一數學(xué)公開(kāi)課教案3
教學(xué)目標
會(huì )運用圖象判斷單調性;理解函數的單調性,能判斷或證明一些簡(jiǎn)單函數單調性;注意必須在定義域內或其子集內討論函數的單調性。
重 點(diǎn)
函數單調性的證明及判斷。
難 點(diǎn)
函數單調性證明及其應用。
一、復習引入
1、函數的定義域、值域、圖象、表示方法
2、函數單調性
(1)單調增函數
(2)單調減函數
(3)單調區間
二、例題分析
例1、畫(huà)出下列函數圖象,并寫(xiě)出單調區間:
(1) (2) (2)
例2、求證:函數 在區間 上是單調增函數。
例3、討論函數 的單調性,并證明你的結論。
變(1)討論函數 的單調性,并證明你的結論
變(2)討論函數 的單調性,并證明你的結論。
例4、試判斷函數 在 上的單調性。
三、隨堂練習
1、判斷下列說(shuō)法正確的是 。
(1)若定義在 上的函數 滿(mǎn)足 ,則函數 是 上的單調增函數;
(2)若定義在 上的函數 滿(mǎn)足 ,則函數 在 上不是單調減函數;
(3)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數;
(4)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數。
2、若一次函數 在 上是單調減函數,則點(diǎn) 在直角坐標平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函數 在 上是______;函數 在 上是______。
3.下圖分別為函數 和 的圖象,求函數 和 的.單調增區間。
4、求證:函數 是定義域上的單調減函數。
四、回顧小結
1、函數單調性的判斷及證明。
課后作業(yè)
一、基礎題
1、求下列函數的單調區間
(1) (2)
2、畫(huà)函數 的圖象,并寫(xiě)出單調區間。
二、提高題
3、求證:函數 在 上是單調增函數。
4、若函數 ,求函數 的單調區間。
5、若函數 在 上是增函數,在 上是減函數,試比較 與 的大小。
三、能力題
6、已知函數 ,試討論函數f(x)在區間 上的單調性。
變(1)已知函數 ,試討論函數f(x)在區間 上的單調性。
高一數學(xué)公開(kāi)課教案4
一、教學(xué)目標
1、知識與技能
。1)通過(guò)實(shí)物操作,增強學(xué)生的直觀(guān)感知。
。2)能根據幾何結構特征對空間物體進(jìn)行分類(lèi)。
。3)會(huì )用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
。4)會(huì )表示有關(guān)于幾何體以及柱、錐、臺的分類(lèi)。
2、過(guò)程與方法
。1)讓學(xué)生通過(guò)直觀(guān)感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結構特征。
。2)讓學(xué)生觀(guān)察、討論、歸納、概括所學(xué)的知識。
3、情感態(tài)度與價(jià)值觀(guān)
。1)使學(xué)生感受空間幾何體存在于現實(shí)生活周?chē),增強學(xué)生學(xué)習的積極性,同時(shí)提高學(xué)生的觀(guān)察能力。
。2)培養學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結構特征。 難點(diǎn):柱、錐、臺、球的結構特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀(guān)察、思考、交流、討論、概括。
。2)實(shí)物模型、投影儀 四、教學(xué)思路
。ㄒ唬﹦(chuàng )設情景,揭示課題
1、教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動(dòng)及時(shí)給予評價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過(guò)觀(guān)察。根據某種標準對這些空間物體進(jìn)行分類(lèi)嗎?這是我們所要學(xué)習的內容。
。ǘ、研探新知
1、引導學(xué)生觀(guān)察物體、思考、交流、討論,對物體進(jìn)行分類(lèi),分辯棱柱、圓柱、棱錐。
2、觀(guān)察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。
。1)有兩個(gè)面互相平行;
。2)其余各面都是平行四邊形;
。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類(lèi)?
請列舉身邊具有已學(xué)過(guò)的幾何結構特征的物體,并說(shuō)出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
6、以類(lèi)似的'方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關(guān)的概念,分類(lèi)以及表示。
7、讓學(xué)生觀(guān)察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8、引導學(xué)生以類(lèi)似的方法思考圓錐、圓臺、球的結構特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統稱(chēng)為柱體,棱臺與圓臺統稱(chēng)為臺體,圓錐與棱錐統稱(chēng)為錐體。
10、現實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學(xué)過(guò)的幾何結構特征的物體,并說(shuō)出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本P8,習題1.1 A組第1題。
4、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習:課本P7 練習1、2(1)(2) 課本P8 習題1.1 第2、3、4題 五、歸納整理
由學(xué)生整理學(xué)習了哪些內容 六、布置作業(yè)
課本P8 練習題1.1 B組第1題
課外練習 課本P8 習題1.1 B組第2題
高一數學(xué)公開(kāi)課教案5
一、教材
首先談?wù)勎覍滩牡睦斫,《兩條直線(xiàn)平行與垂直的判定》是人教A版高中數學(xué)必修2第三章3.1.2的內容,本節課的內容是兩條直線(xiàn)平行與垂直的判定的推導及其應用,學(xué)生對于直線(xiàn)平行和垂直的概念已經(jīng)十分熟悉,并且在上節課學(xué)習了直線(xiàn)的傾斜角與斜率,為本節課的學(xué)習打下了基礎。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向學(xué)生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。
三、教學(xué)目標
根據以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握兩條直線(xiàn)平行與垂直的判定,能夠根據其判定兩條直線(xiàn)的'位置關(guān)系。
(二)過(guò)程與方法
在經(jīng)歷兩條直線(xiàn)平行與垂直的判定過(guò)程中,提升邏輯推理能力。
(三)情感態(tài)度價(jià)值觀(guān)
在猜想論證的過(guò)程中,體會(huì )數學(xué)的嚴謹性。
四、教學(xué)重難點(diǎn)
我認為一節好的數學(xué)課,從教學(xué)內容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學(xué)重點(diǎn)是:兩條直線(xiàn)平行與垂直的判定。本節課的教學(xué)難點(diǎn)是:兩條直線(xiàn)平行與垂直的判定的推導。
五、教法和學(xué)法
現代教學(xué)理論認為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習的主體,教師是學(xué)習的組織者、引導者,教學(xué)的一切活動(dòng)都必須以強調學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據這一教學(xué)理念,結合本節課的內容特點(diǎn)和學(xué)生的年齡特征,本節課我采用講授法、練習法、小組合作等教學(xué)方法。
六、教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎覍虒W(xué)過(guò)程的設計。
(一)新課導入
首先是導入環(huán)節,那么我采用復習導入,回顧上節課所學(xué)的直線(xiàn)的傾斜角與斜率并順勢提問(wèn):能否通過(guò)直線(xiàn)的斜率,來(lái)判斷兩條直線(xiàn)的位置關(guān)系呢?
利用上節課所學(xué)的知識進(jìn)行導入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來(lái)是教學(xué)中最重要的新知探索環(huán)節,我主要采用講解法、小組合作、啟發(fā)法等。
【高一數學(xué)公開(kāi)課教案】相關(guān)文章:
小班下數學(xué)公開(kāi)課教案08-08
中班數學(xué)公開(kāi)課教案05-29
中班數學(xué)公開(kāi)課教案04-11
小班優(yōu)秀數學(xué)公開(kāi)課教案02-01
小班期數學(xué)公開(kāi)課教案05-06